ﻻ يوجد ملخص باللغة العربية
We test the valley-filtering capabilities of a quantum dot inscribed by locally straining an $alpha$-$mathcal{T}_3$ lattice. Specifically, we consider an out-of-plane Gaussian bump in the center of a four-terminal configuration and calculate the generated pseudomagnetic field having an opposite direction for electrons originating from different valleys, the resulting valley-polarized currents, and the conductance between the injector and collector situated opposite one another. Depending on the quantum dots width and width-to-height ratio, we detect different transport regimes with and without valley filtering for both the $alpha$-$mathcal{T}_3$ and dice lattice structures. In addition, we analyze the essence of the conductance resonances with a high valley polarization in terms of related (pseudo-) Landau levels, the spatial distribution of the local density of states, and the local current densities. The observed local charge and current density patterns reflect the local inversion symmetry breaking by the strain, besides the global inversion symmetry breaking due to the scaling parameter $alpha$. By this way we can also filter out different sublattices.
We address the electronic properties of quantum dots in the two-dimensional $alpha-mathcal{T}_3$ lattice when subjected to a perpendicular magnetic field. Implementing an infinite mass boundary condition, we first solve the eigenvalue problem for an
Exchange coupling is a key ingredient for spin-based quantum technologies since it can be used to entangle spin qubits and create logical spin qubits. However, the influence of the electronic valley degree of freedom in silicon on exchange interactio
Self-assembled quantum dots (QDs) are highly strained heterostructures. the lattice strain significantly modifies the electronic and optical properties of these devices. A universal behavior is observed in atomistic strain simulations (in terms of bo
We develop a theory of inter-valley Coulomb scattering in semiconducting carbon-nanotube quantum dots, taking into account the effects of curvature and chirality. Starting from the effective-mass description of single-particle states, we study the tw
We examine energy spectra of Si quantum dots embedded into Si_{0.75}Ge_{0.25} buffers using atomistic numerical calculations for dimensions relevant to qubit implementations. The valley degeneracy of the lowest orbital state is lifted and valley spli