ﻻ يوجد ملخص باللغة العربية
We offer a new solution to an old puzzle in the penguin-dominated $Btopi K$ decays. The puzzle is the inconsistency among the measurements of the branching ratios and CP asymmetries of the four $Btopi K$ decays: $B^+ to pi^+ K^0$, $B^+to pi^0 K^+$, $B_d^0topi^- K^+$, $B_d^0topi^0 K^0$. We solve the $Btopi K$ puzzle by considering the effect of an axion-like particle (ALP) that mixes with the $pi^0$ and has mass close to the $pi^0$ mass. We show that the ALP can also explain the anomalies in the electron and muon anomalous magnetic moments.
Data from the Muon g-2 experiment and measurements of the fine structure constant suggest that the anomalous magnetic moments of the muon and electron are at odds with standard model expectations. We survey the ability of axion-like-particles, two-Hi
In the light of the recent result of the Muon g-2 experiment and the update on the test of lepton flavour universality $R_K$ published by the LHCb collaboration, we systematically build and discuss a set of models with minimal field content that can
We perform a phenomenological analysis of simplified models of light, feebly interacting particles (FIPs) that can provide a combined explanation of the anomalies in $bto s l^+ l ^-$ transitions at LHCb and the anomalous magnetic moment of the muon.
We present a model of radiative neutrino masses which also resolves anomalies reported in $B$-meson decays, $R_{D^{(star)}}$ and $R_{K^{(star)}}$, as well as in muon $g-2$ measurement, $Delta a_mu$. Neutrino masses arise in the model through loop dia
We present a novel data-driven method for determining the hadronic interaction strengths of axion-like particles (ALPs) with QCD-scale masses. Using our method, it is possible to calculate the hadronic production and decay rates of ALPs, along with m