ﻻ يوجد ملخص باللغة العربية
Scalable quantum information processing requires the ability to tune multi-qubit interactions. This makes the precise manipulation of quantum states particularly difficult for multi-qubit interactions because tunability unavoidably introduces sensitivity to fluctuations in the tuned parameters, leading to erroneous multi-qubit gate operations. The performance of quantum algorithms may be severely compromised by coherent multi-qubit errors. It is therefore imperative to understand how these fluctuations affect multi-qubit interactions and, more importantly, to mitigate their influence. In this study, we demonstrate how to implement dynamical-decoupling techniques to suppress the two-qubit analogue of the dephasing on a superconducting quantum device featuring a compact tunable coupler, a trending technology that enables the fast manipulation of qubit--qubit interactions. The pure-dephasing time shows an up to ~14 times enhancement on average when using robust sequences. The results are in good agreement with the noise generated from room-temperature circuits. Our study further reveals the decohering processes associated with tunable couplers and establishes a framework to develop gates and sequences robust against two-qubit errors.
We propose a pulsed dynamical decoupling protocol as the generator of tunable, fast, and robust quantum phase gates between two microwave-driven trapped ion hyperfine qubits. The protocol consists of sequences of $pi$-pulses acting on ions that are o
Even though the traditional dynamical decoupling methods have the ability to resist dynamic dephasing caused by low frequency noise, they are not appropriate for suppressing the residual geometric dephasing, which arises from the disturbance for the
We consider dynamical decoupling schemes in which the qubit is continuously manipulated by a control field at all times. Building on the theory of the Uhrig Dynamical Decoupling sequence (UDD) and its connections to Chebyshev polynomials, we derive a
We show that dissipative quantum state preparation processes can be protected against qubit dephasing by interlacing the state preparation control with dynamical decoupling (DD) control consisting of a sequence of short $pi$-pulses. The inhomogeneous
Topological quantum error correction codes are known to be able to tolerate arbitrary local errors given sufficient qubits. This includes correlated errors involving many local qubits. In this work, we quantify this level of tolerance, numerically st