ترغب بنشر مسار تعليمي؟ اضغط هنا

Invariant structure preserving functions and an Oka-Weil Kaplansky density type theorem

68   0   0.0 ( 0 )
 نشر من قبل J E Pascoe
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف J. E. Pascoe




اسأل ChatGPT حول البحث

We develop the theory of invariant structure preserving and free functions on a general structured topological space. We show that an invariant structure preserving function is pointwise approximiable by the appropriate analog of polynomials in the strong topology and therefore a free function. Moreover, if a domain of operators on a Hilbert space is polynomially convex, the set of free functions satisfies a Oka-Weil Kaplansky density type theorem -- contractive functions can be approximated by contractive polynomials.



قيم البحث

اقرأ أيضاً

In [11] the authors investigated a family of quotient Hilbert modules in the Cowen-Douglas class over the unit disk constructed from classical Hilbert modules such as the Hardy and Bergman modules. In this paper we extend the results to the multivari able case of higher multiplicity. Moreover, similarity as well as isomorphism results are obtained.
284 - De Huang 2019
We show that Liebs concavity theorem holds more generally for any unitarily invariant matrix function $phi:mathbf{H}^n_+rightarrow mathbb{R}$ that is monotone and concave. Concretely, we prove the joint concavity of the function $(A,B) mapstophibig[( B^frac{qs}{2}K^*A^{ps}KB^frac{qs}{2})^{frac{1}{s}}big] $ on $mathbf{H}_+^mtimesmathbf{H}_+^n$, for any $Kin mathbb{C}^{mtimes n},sin(0,1],p,qin[0,1], p+qleq 1$.
92 - Nico Spronk 2016
We outline a simple proof of Hulanickis theorem, that a locally compact group is amenable if and only if the left regular representation weakly contains all unitary representations. This combines some elements of the literature which have not appeared together, before.
96 - De Huang 2019
We show that Liebs concavity theorem holds more generally for any unitary invariant matrix function $phi:mathbf{H}_+^nrightarrow mathbb{R}_+^n$ that is concave and satisfies Holders inequality. Concretely, we prove the joint concavity of the function $(A,B) mapstophibig[(B^frac{qs}{2}K^*A^{ps}KB^frac{qs}{2})^{frac{1}{s}}big] $ on $mathbf{H}_+^ntimesmathbf{H}_+^m$, for any $Kin mathbb{C}^{ntimes m}$ and any $s,p,qin(0,1], p+qleq 1$. This result improves a recent work by Huang for a more specific class of $phi$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا