ترغب بنشر مسار تعليمي؟ اضغط هنا

BBAEG: Towards BERT-based Biomedical Adversarial Example Generation for Text Classification

89   0   0.0 ( 0 )
 نشر من قبل Ishani Mondal
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Ishani Mondal




اسأل ChatGPT حول البحث

Healthcare predictive analytics aids medical decision-making, diagnosis prediction and drug review analysis. Therefore, prediction accuracy is an important criteria which also necessitates robust predictive language models. However, the models using deep learning have been proven vulnerable towards insignificantly perturbed input instances which are less likely to be misclassified by humans. Recent efforts of generating adversaries using rule-based synonyms and BERT-MLMs have been witnessed in general domain, but the ever increasing biomedical literature poses unique challenges. We propose BBAEG (Biomedical BERT-based Adversarial Example Generation), a black-box attack algorithm for biomedical text classification, leveraging the strengths of both domain-specific synonym replacement for biomedical named entities and BERTMLM predictions, spelling variation and number replacement. Through automatic and human evaluation on two datasets, we demonstrate that BBAEG performs stronger attack with better language fluency, semantic coherence as compared to prior work.



قيم البحث

اقرأ أيضاً

Text generation with generative adversarial networks (GANs) can be divided into the text-based and code-based categories according to the type of signals used for discrimination. In this work, we introduce a novel text-based approach called Soft-GAN to effectively exploit GAN setup for text generation. We demonstrate how autoencoders (AEs) can be used for providing a continuous representation of sentences, which we will refer to as soft-text. This soft representation will be used in GAN discrimination to synthesize similar soft-texts. We also propose hybrid latent code and text-based GAN (LATEXT-GAN) approaches with one or more discriminators, in which a combination of the latent code and the soft-text is used for GAN discriminations. We perform a number of subjective and objective experiments on two well-known datasets (SNLI and Image COCO) to validate our techniques. We discuss the results using several evaluation metrics and show that the proposed techniques outperform the traditional GAN-based text-generation methods.
Inspired by the success of self attention mechanism and Transformer architecture in sequence transduction and image generation applications, we propose novel self attention-based architectures to improve the performance of adversarial latent code- ba sed schemes in text generation. Adversarial latent code-based text generation has recently gained a lot of attention due to their promising results. In this paper, we take a step to fortify the architectures used in these setups, specifically AAE and ARAE. We benchmark two latent code-based methods (AAE and ARAE) designed based on adversarial setups. In our experiments, the Google sentence compression dataset is utilized to compare our method with these methods using various objective and subjective measures. The experiments demonstrate the proposed (self) attention-based models outperform the state-of-the-art in adversarial code-based text generation.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from th e target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each others generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
99 - Catherine Wong 2017
Machine learning models are powerful but fallible. Generating adversarial examples - inputs deliberately crafted to cause model misclassification or other errors - can yield important insight into model assumptions and vulnerabilities. Despite signif icant recent work on adversarial example generation targeting image classifiers, relatively little work exists exploring adversarial example generation for text classifiers; additionally, many existing adversarial example generation algorithms require full access to target model parameters, rendering them impractical for many real-world attacks. In this work, we introduce DANCin SEQ2SEQ, a GAN-inspired algorithm for adversarial text example generation targeting largely black-box text classifiers. We recast adversarial text example generation as a reinforcement learning problem, and demonstrate that our algorithm offers preliminary but promising steps towards generating semantically meaningful adversarial text examples in a real-world attack scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا