ﻻ يوجد ملخص باللغة العربية
Optical trapping describes the interaction between light and matter to manipulate micro-objects through momentum transfer. In the case of 3D trapping with a single beam, this is termed optical tweezers. Optical tweezers are a powerful and non-invasive tool for manipulating small objects, which have become indispensable in many fields, including physics, biology, soft condensed matter, amongst others. In the early days, optical trapping were typically used with a single Gaussian beam. In recent years, we have witnessed the rapid progress in the use of structured light beams with customized phase, amplitude and polarization in optical trapping. Unusual beam properties, such as phase singularities on-axis, propagation invariant nature, have opened up novel capabilities to the study of micromanipulation in liquid, air and vacuum. In this review, we summarize the recent advances in the field of optical trapping using structured light beams.
Materials of which the optical response is determined by their structure are of much interest both for their fundamental properties and applications. Examples range from simple gratings to photonic crystals. Obtaining control over the optical propert
Chaos is a phenomenon that occurs in many aspects of contemporary science. In classical dynamics, chaos is defined as a hypersensitivity to initial conditions. The presence of chaos is often unwanted, as it introduces unpredictability, which makes it
Standard optical tweezers rely on optical forces that arise when a focused laser beam interacts with a microscopic particle: scattering forces, which push the particle along the beam direction, and gradient forces, which attract it towards the high-i
We introduce a microscopy technique that facilitates the prediction of spatial features of chirality of nanoscale samples by exploiting photo-induced optical force exerted on an achiral tip in the vicinity of the test specimen. The tip-sample interac
The structural versatility of light underpins an outstanding collection of optical phenomena where both geometrical and topological states of light can dictate how matter will respond or display. Light possesses multiple degrees of freedom such as am