ترغب بنشر مسار تعليمي؟ اضغط هنا

Closing up the cluster tension?

65   0   0.0 ( 0 )
 نشر من قبل Alain Blanchard Prof.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The exquisite measurements of the cosmic microwave background (CMB) fluctuations by Planck allows us to tightly constrain the amplitude of matter fluctuations at redshift $sim 1100$ in the $Lambda$-cold dark matter ($Lambda$CDM) model. This amplitude can be extrapolated to the present epoch, yielding constraints on the value of the $sigma_8$ parameter. On the other hand the abundance of Sunyaev-Zeldovich (SZ) clusters detected by Planck, with masses inferred by using hydrostatic equilibrium estimates, leads to a significantly lower value of the same parameter. This discrepancy is often dubbed the $sigma_8$ tension in the literature and is sometimes regarded as a possible sign of new physics. Here, we examine a direct determination of $sigma_8$ at the present epoch in $Lambda$CDM, and thereby the cluster mass calibrations using cosmological data at low redshift, namely the measurements of $fsigma_8$ from the analysis of the completed Sloan Digital Sky Survey (SDSS): we combine redshift-space distortions measurements with Planck CMB constraints, X-ray, and SZ cluster counts within the $Lambda$CDM framework, but leaving the present day amplitude of matter fluctuations as an independent parameter (i.e. no extrapolation is made from high-redshift CMB constraints). The calibration of X-ray and SZ masses are therefore left as free parameters throughout the whole analysis. Our study yields tight constraints on the aforementioned calibrations, with values entirely consistent with results obtained from the full combination of CMB and cluster data only. Such agreement suggests an absence of tension in the $Lambda$CDM model between CMB-based estimates of $sigma_8$ and constraints from low-redshift on $fsigma_8$ but indicates a tension with the standard calibration of clusters masses.

قيم البحث

اقرأ أيضاً

67 - A. Blanchard , Z. Sakr , S. IliC 2018
The abundance of clusters is a classical cosmological probe sensitive to both the geometrical aspects and the growth rate of structures. The abundance of clusters of galaxies measured by Planck has been found to be in tension with the prediction of t he LCDM models normalized to Planck CMB fluctuations power spectra. The same tension appears with X-ray cluster local abundance. Massive neutrinos and modified gravity are two possible solutions to fix this tension. Alternatively, others options include a bias in the selection procedure or in the mass calibration of clusters. We present a study, based on our recent work, updating the present situation on this topic and discuss the likelihood of the various options.
Evolution and abundance of the large-scale structures we observe today, such as clusters of galaxies, is sensitive to the statistical properties of dark matter primordial density fluctuations, which is assumed to follow a Gaussian probability distrib ution function. Within this assumption, a significant disagreement have been found between clusters counts made by Planck and their prediction when calibrated by CMB angular power spectrum. The purpose of this work is to relax the Gaussianty assumption and test if Non-Gaussianity in dark matter primordial density fluctuations, could alleviate the tension.
We present deep J and Ks band photometry of 20 high redshift galaxy clusters between z=0.8-1.5, 19 of which are observed with the MOIRCS instrument on the Subaru Telescope. By using near-infrared light as a proxy for stellar mass we find the surprisi ng result that the average stellar mass of Brightest Cluster Galaxies (BCGs) has remained constant at ~9e11MSol since z~1.5. We investigate the effect on this result of differing star formation histories generated by three well known and independent stellar population codes and find it to be robust for reasonable, physically motivated choices of age and metallicity. By performing Monte Carlo simulations we find that the result is unaffected by any correlation between BCG mass and cluster mass in either the observed or model clusters. The large stellar masses imply that the assemblage of these galaxies took place at the same time as the initial burst of star formation. This result leads us to conclude that dry merging has had little effect on the average stellar mass of BCGs over the last 9-10 Gyr in stark contrast to the predictions of semi-analytic models, based on the hierarchical merging of dark matter haloes, which predict a more protracted mass build up over a Hubble time. We discuss however that there is potential for reconciliation between observation and theory if there is a significant growth of material in the intracluster light over the same period.
We present CARMA observations of the three northern unconfirmed galaxy clusters discovered by the PLANCK satellite. We confirm the existence of two massive clusters (PLCKESZ G115.71+17.52 and PLCKESZ G121.11+57.01) at high significance. For these clu sters, we present refined centroid locations from the 31 GHz CARMA data, as well as mass estimates obtained from a joint analysis of CARMA and PLANCK data. We do not detect the third candidate, PLCKESZ G189.84-37.24, and place an upper limit on its mass of M500 < 3.2 X 10^(14) M_SUN at 68% confidence. Considering our data and the characteristics of the PLANCK Early Release SZ Catalog, we conclude that this object is likely to be a cold-core object in the plane of our Galaxy. As a result, we estimate the purity of the ESZ Catalog to be greater than 99.5%.
Braneworld models with induced gravity exhibit phantom-like behaviour of the effective equation of state of dark energy. They can, therefore, naturally accommodate higher values of $H_0$, preferred by recent local measurements, while satisfying the C MB constraints. We test the background evolution in such phantom braneworld scenarios with the current observational datasets. We find that the phantom braneworld prefers a higher value of $H_0$ even without the R19 prior, thereby providing a much better fit to the local measurements. Although this braneworld model cannot fully satisfy all combinations of cosmological observables, among existing dark energy candidates the phantom brane provides one of the most compelling explanations of cosmic evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا