ترغب بنشر مسار تعليمي؟ اضغط هنا

EfficientNetV2: Smaller Models and Faster Training

195   0   0.0 ( 0 )
 نشر من قبل Mingxing Tan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper introduces EfficientNetV2, a new family of convolutional networks that have faster training speed and better parameter efficiency than previous models. To develop this family of models, we use a combination of training-aware neural architecture search and scaling, to jointly optimize training speed and parameter efficiency. The models were searched from the search space enriched with new ops such as Fused-MBConv. Our experiments show that EfficientNetV2 models train much faster than state-of-the-art models while being up to 6.8x smaller. Our training can be further sped up by progressively increasing the image size during training, but it often causes a drop in accuracy. To compensate for this accuracy drop, we propose to adaptively adjust regularization (e.g., dropout and data augmentation) as well, such that we can achieve both fast training and good accuracy. With progressive learning, our EfficientNetV2 significantly outperforms previous models on ImageNet and CIFAR/Cars/Flowers datasets. By pretraining on the same ImageNet21k, our EfficientNetV2 achieves 87.3% top-1 accuracy on ImageNet ILSVRC2012, outperforming the recent ViT by 2.0% accuracy while training 5x-11x faster using the same computing resources. Code will be available at https://github.com/google/automl/tree/master/efficientnetv2.

قيم البحث

اقرأ أيضاً

High-resolution (HR) magnetic resonance imaging (MRI) provides detailed anatomical information that is critical for diagnosis in the clinical application. However, HR MRI typically comes at the cost of long scan time, small spatial coverage, and low signal-to-noise ratio (SNR). Recent studies showed that with a deep convolutional neural network (CNN), HR generic images could be recovered from low-resolution (LR) inputs via single image super-resolution (SISR) approaches. Additionally, previous works have shown that a deep 3D CNN can generate high-quality SR MRIs by using learned image priors. However, 3D CNN with deep structures, have a large number of parameters and are computationally expensive. In this paper, we propose a novel 3D CNN architecture, namely a multi-level densely connected super-resolution network (mDCSRN), which is light-weight, fast and accurate. We also show that with the generative adversarial network (GAN)-guided training, the mDCSRN-GAN provides appealing sharp SR images with rich texture details that are highly comparable with the referenced HR images. Our results from experiments on a large public dataset with 1,113 subjects showed that this new architecture outperformed other popular deep learning methods in recovering 4x resolution-downgraded images in both quality and speed.
Compressed bitmap indexes are used in databases and search engines. Many bitmap compression techniques have been proposed, almost all relying primarily on run-length encoding (RLE). However, on unsorted data, we can get superior performance with a hy brid compression technique that uses both uncompressed bitmaps and packed arrays inside a two-level tree. An instance of this technique, Roaring, has recently been proposed. Due to its good performance, it has been adopted by several production platforms (e.g., Apache Lucene, Apache Spark, Apache Kylin and Druid). Yet there are cases where run-length encoded bitmaps are smaller than the original Roaring bitmaps---typically when the data is sorted so that the bitmaps contain long compressible runs. To better handle these cases, we build a new Roaring hybrid that combines uncompressed bitmaps, packed arrays and RLE compressed segments. The result is a new Roaring format that compresses better. Overall, our new implementation of Roaring can be several times faster (up to two orders of magnitude) than the implementations of traditional RLE-based alternatives (WAH, Concise, EWAH) while compressing better. We review the design choices and optimizations that make these good results possible.
PAC-learning usually aims to compute a small subset ($varepsilon$-sample/net) from $n$ items, that provably approximates a given loss function for every query (model, classifier, hypothesis) from a given set of queries, up to an additive error $varep silonin(0,1)$. Coresets generalize this idea to support multiplicative error $1pmvarepsilon$. Inspired by smoothed analysis, we suggest a natural generalization: approximate the emph{average} (instead of the worst-case) error over the queries, in the hope of getting smaller subsets. The dependency between errors of different queries implies that we may no longer apply the Chernoff-Hoeffding inequality for a fixed query, and then use the VC-dimension or union bound. This paper provides deterministic and randomized algorithms for computing such coresets and $varepsilon$-samples of size independent of $n$, for any finite set of queries and loss function. Example applications include new and improved coreset constructions for e.g. streaming vector summarization [ICML17] and $k$-PCA [NIPS16]. Experimental results with open source code are provided.
The Bloom filter provides fast approximate set membership while using little memory. Engineers often use these filters to avoid slow operations such as disk or network accesses. As an alternative, a cuckoo filter may need less space than a Bloom filt er and it is faster. Chazelle et al. proposed a generalization of the Bloom filter called the Bloomier filter. Dietzfelbinger and Pagh described a variation on the Bloomier filter that can be used effectively for approximate membership queries. It has never been tested empirically, to our knowledge. We review an efficient implementation of their approach, which we call the xor filter. We find that xor filters can be faster than Bloom and cuckoo filters while using less memory. We further show that a more compact version of xor filters (xor+) can use even less space than highly compact alternatives (e.g., Golomb-compressed sequences) while providing speeds competitive with Bloom filters.
One common failure mode of Neural Radiance Field (NeRF) models is fitting incorrect geometries when given an insufficient number of input views. We propose DS-NeRF (Depth-supervised Neural Radiance Fields), a loss for learning neural radiance fields that takes advantage of readily-available depth supervision. Our key insight is that sparse depth supervision can be used to regularize the learned geometry, a crucial component for effectively rendering novel views using NeRF. We exploit the fact that current NeRF pipelines require images with known camera poses that are typically estimated by running structure-from-motion (SFM). Crucially, SFM also produces sparse 3D points that can be used as ``free depth supervision during training: we simply add a loss to ensure that depth rendered along rays that intersect these 3D points is close to the observed depth. We find that DS-NeRF can render more accurate images given fewer training views while training 2-6x faster. With only two training views on real-world images, DS-NeRF significantly outperforms NeRF as well as other sparse-view variants. We show that our loss is compatible with these NeRF models, demonstrating that depth is a cheap and easily digestible supervisory signal. Finally, we show that DS-NeRF supports other types of depth supervision such as scanned depth sensors and RGBD reconstruction outputs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا