ﻻ يوجد ملخص باللغة العربية
The Picard iteration is widely used to find fixed points of locally contractive (LC) maps. This paper extends the Picard iteration to distributed settings; specifically, we assume the map of which the fixed point is sought to be the average of individual (not necessarily LC) maps held by a set of agents linked by a sparse communication network. An additional difficulty is that the LC map is not assumed to come from an underlying optimization problem, which prevents exploiting strong global properties such as convexity or Lipschitzianity. Yet, we propose a distributed algorithm and prove its convergence, in fact showing that it maintains the linear rate of the standard Picard iteration for the average LC map. As another contribution, our proof imports tools from perturbation theory of linear operators, which, to the best of our knowledge, had not been used before in the theory of distributed computation.
In recent work, we proposed a distributed Picard iteration (DPI) that allows a set of agents, linked by a communication network, to find a fixed point of a locally contractive (LC) map that is the average of individual maps held by said agents. In th
Recent years have witnessed the surge of asynchronous parallel (async-parallel) iterative algorithms due to problems involving very large-scale data and a large number of decision variables. Because of asynchrony, the iterates are computed with outda
We investigate fast and communication-efficient algorithms for the classic problem of minimizing a sum of strongly convex and smooth functions that are distributed among $n$ different nodes, which can communicate using a limited number of bits. Most
Stochastic gradient methods (SGMs) are predominant approaches for solving stochastic optimization. On smooth nonconvex problems, a few acceleration techniques have been applied to improve the convergence rate of SGMs. However, little exploration has
Stochastic gradient methods (SGMs) are the predominant approaches to train deep learning models. The adapti