ترغب بنشر مسار تعليمي؟ اضغط هنا

An Exponential Time Parameterized Algorithm for Planar Disjoint Paths

74   0   0.0 ( 0 )
 نشر من قبل Pranabendu Misra
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the Disjoint Paths problem, the input is an undirected graph $G$ on $n$ vertices and a set of $k$ vertex pairs, ${s_i,t_i}_{i=1}^k$, and the task is to find $k$ pairwise vertex-disjoint paths connecting $s_i$ to $t_i$. The problem was shown to have an $f(k)n^3$ algorithm by Robertson and Seymour. In modern terminology, this means that Disjoint Paths is fixed parameter tractable (FPT), parameterized by the number of vertex pairs. This algorithm is the cornerstone of the entire graph minor theory, and a vital ingredient in the $g(k)n^3$ algorithm for Minor Testing (given two undirected graphs, $G$ and $H$ on $n$ and $k$ vertices, respectively, the objective is to check whether $G$ contains $H$ as a minor). All we know about $f$ and $g$ is that these are computable functions. Thus, a challenging open problem in graph algorithms is to devise an algorithm for Disjoint Paths where $f$ is single exponential. That is, $f$ is of the form $2^{{sf poly}(k)}$. The algorithm of Robertson and Seymour relies on topology and essentially reduces the problem to surface-embedded graphs. Thus, the first major obstacle that has to be overcome in order to get an algorithm with a single exponential running time for Disjoint Paths and {sf Minor Testing} on general graphs is to solve Disjoint Paths in single exponential time on surface-embedded graphs and in particular on planar graphs. Even when the inputs to Disjoint Paths are restricted to planar graphs, a case called the Planar Disjoint Paths problem, the best known algorithm has running time $2^{2^{O(k)}}n^2$. In this paper, we make the first step towards our quest for designing a single exponential time algorithm for Disjoint Paths by giving a $2^{O(k^2)}n^{O(1)}$-time algorithm for Planar Disjoint Paths.



قيم البحث

اقرأ أيضاً

We study the classical Node-Disjoint Paths (NDP) problem: given an $n$-vertex graph $G$ and a collection $M={(s_1,t_1),ldots,(s_k,t_k)}$ of pairs of vertices of $G$ called demand pairs, find a maximum-cardinality set of node-disjoint paths connecting the demand pairs. NDP is one of the most basic routing problems, that has been studied extensively. Despite this, there are still wide gaps in our understanding of its approximability: the best currently known upper bound of $O(sqrt n)$ on its approximation ratio is achieved via a simple greedy algorithm, while the best current negative result shows that the problem does not have a better than $Omega(log^{1/2-delta}n)$-approximation for any constant $delta$, under standard complexity assumptions. Even for planar graphs no better approximation algorithms are known, and to the best of our knowledge, the best negative bound is APX-hardness. Perhaps the biggest obstacle to obtaining better approximation algorithms for NDP is that most currently known approximation algorithms for this type of problems rely on the standard multicommodity flow relaxation, whose integrality gap is $Omega(sqrt n)$ for NDP, even in planar graphs. In this paper, we break the barrier of $O(sqrt n)$ on the approximability of the NDP problem in planar graphs and obtain an $tilde O(n^{9/19})$-approximation. We introduce a new linear programming relaxation of the problem, and a number of new techniques, that we hope will be helpful in designing more powerful algorithms for this and related problems.
In the classical Node-Disjoint Paths (NDP) problem, the input consists of an undirected $n$-vertex graph $G$, and a collection $mathcal{M}={(s_1,t_1),ldots,(s_k,t_k)}$ of pairs of its vertices, called source-destination, or demand, pairs. The goal is to route the largest possible number of the demand pairs via node-disjoint paths. The best current approximation for the problem is achieved by a simple greedy algorithm, whose approximation factor is $O(sqrt n)$, while the best current negative result is an $Omega(log^{1/2-delta}n)$-hardness of approximation for any constant $delta$, under standard complexity assumptions. Even seemingly simple special cases of the problem are still poorly understood: when the input graph is a grid, the best current algorithm achieves an $tilde O(n^{1/4})$-approximation, and when it is a general planar graph, the best current approximation ratio of an efficient algorithm is $tilde O(n^{9/19})$. The best currently known lower bound on the approximability of both the
A cactus is a connected graph that does not contain $K_4 - e$ as a minor. Given a graph $G = (V, E)$ and integer $k ge 0$, Cactus Vertex Deletion (also known as Diamond Hitting Set) is the problem of deciding whether $G$ has a vertex set of size at m ost $k$ whose removal leaves a forest of cacti. The current best deterministic parameterized algorithm for this problem was due to Bonnet et al. [WG 2016], which runs in time $26^kn^{O(1)}$, where $n$ is the number of vertices of $G$. In this paper, we design a deterministic algorithm for Cactus Vertex Deletion, which runs in time $17.64^kn^{O(1)}$. As a straightforward application of our algorithm, we give a $17.64^kn^{O(1)}$-time algorithm for Even Cycle Transversal. The idea behind this improvement is to apply the measure and conquer analysis with a slightly elaborate measure of instances.
The optimization version of the Unique Label Cover problem is at the heart of the Unique Games Conjecture which has played an important role in the proof of several tight inapproximability results. In recent years, this problem has been also studied extensively from the point of view of parameterized complexity. Cygan et al. [FOCS 2012] proved that this problem is fixed-parameter tractable (FPT) and Wahlstrom [SODA 2014] gave an FPT algorithm with an improved parameter dependence. Subsequently, Iwata, Wahlstrom and Yoshida [2014] proved that the edge version of Unique Label Cover can be solved in linear FPT-time. That is, there is an FPT algorithm whose dependence on the input-size is linear. However, such an algorithm for the node version of the problem was left as an open problem. In this paper, we resolve this question by presenting the first linear-time FPT algorithm for Node Unique Label Cover.
In the Directed Feedback Vertex Set (DFVS) problem, the input is a directed graph $D$ on $n$ vertices and $m$ edges, and an integer $k$. The objective is to determine whether there exists a set of at most $k$ vertices intersecting every directed cycl e of $D$. Whether or not DFVS admits a fixed parameter tractable (FPT) algorithm was considered the most important open problem in parameterized complexity until Chen, Liu, Lu, OSullivan and Razgon [JACM 2008] answered the question in the affirmative. They gave an algorithm for the problem with running time $O(k!4^kk^4nm)$. Since then, no faster algorithm for the problem has been found. In this paper, we give an algorithm for DFVS with running time $O(k!4^kk^5(n+m))$. Our algorithm is the first algorithm for DFVS with linear dependence on input size. Furthermore, the asymptotic dependence of the running time of our algorithm on the parameter $k$ matches up to a factor $k$ the algorithm of Chen, Liu, Lu, OSullivan and Razgon. On the way to designing our algorithm for DFVS, we give a general methodology to shave off a factor of $n$ from iterative-compression based algorithms for a few other well-studied covering problems in parameterized complexity. We demonstrate the applicability of this technique by speeding up by a factor of $n$, the current best FPT algorithms for Multicut [STOC 2011, SICOMP 2014] and Directed Subset Feedback Vertex Set [ICALP 2012, TALG 2014].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا