ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Imaging of Chemically and Geometrically Controlled Interfacial Diffusion and Redox in 2D van der Waals Space

105   0   0.0 ( 0 )
 نشر من قبل Sunmin Ryu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Molecular motions and chemical reactions occurring in constrained space play key roles in many catalysis and energy storage applications. However, its understanding has been impeded by difficulty in detection and lack of reliable model systems. In this work, we report geometric and chemical manipulation of O2 diffusion and ensuing O2-mediated charge transfer (CT) that occur in the 2D space between single-layer transition metal dichalcogenides (TMDs) and dielectric substrates. As a sensitive real-time wide-field imaging signal, charge-density-dependent photoluminescence (PL) from TMDs was used. The two sequential processes inducing spatiotemporal PL change could be drastically accelerated by increasing the interfacial gap size or introducing artificial defects serving as CT reaction centers. We also show that widely varying CT kinetics of four TMDs are rate-determined by the degree of hydration required for the reactions. The reported findings will be instrumental in designing novel functional nanostructures and devices.



قيم البحث

اقرأ أيضاً

Understanding charge transfer (CT) between two chemical entities and subsequent change in their charge densities is essential not only for molecular species but also for various low-dimensional materials. Because of their extremely high fraction of s urface atoms, two-dimensional (2-D) materials are most susceptible to charge exchange and exhibit drastically different physicochemical properties depending on their charge density. In this regard, spontaneous and uncontrollable ionization of graphene in the ambient air has caused much confusion and technical difficulty in achieving experimental reproducibility since its first report in 2004. Moreover, the same ambient hole doping was soon observed in 2-D semiconductors, which implied that a common mechanism should be operative and apply to other low-dimensional materials universally. In this Account, we review our breakthroughs in unraveling the chemical origin and mechanistic requirements of the hidden CT reactions using 2-D crystals. We developed in-situ optical methods to quantify charge density using Raman and photoluminescence (PL) spectroscopy and imaging. Using gas and temperature-controlled in-situ measurements, we revealed that the electrical holes are injected by the oxygen reduction reaction (ORR): $O_{2}$ + $4H^{+}$ + $4e^{-}$ $rightleftharpoons$ $2H_{2}O$, which was independently verified by pH dependence in HCl solutions. In addition to oxygen and water vapor, the overall CT reaction requires hydrophilic dielectric substrates, which assist hydration of the sample-substrate interface. The interface-localized reaction allowed us to visualized and control interfacial molecular diffusion and CT by varing the 2-D gap spacing and introducing defects. The complete mechanism of the fundamental charge exchange summarized in this Account will be essential in exploring material and device properties of other low dimensional materials.
225 - M. Blei , J.L. Lado , Q. Song 2020
Spontaneous magnetic order is a routine instance in three-dimensional (3D) materials but for a long time, it remained elusive in the 2D world. Recently, the first examples of (stand-alone) 2D van der Waals (vdW) crystals with magnetic order, either a ntiferromagnetic or ferromagnetic, have been reported. In this review, we describe the state of the art of the nascent field of magnetic 2D materials focusing on synthesis, engineering, and theory aspects. We also discuss challenges and some of the many different promising directions for future work.
2D intercorrelated ferroelectrics, exhibiting a coupled in-plane and out-of-plane ferroelectricity, is a fundamental phenomenon in the field of condensed-mater physics. The current research is based on the paradigm of bi-directional inversion asymmet ry in single-layers, which restricts 2D intercorrelated ferroelectrics to extremely few systems. Herein, we propose a new scheme for achieving 2D intercorrelated ferroelectrics using van der Waals (vdW) interaction, and apply this scheme to a vast family of 2D vdW materials. Using first-principles, we demonstrate that 2D vdW multilayers-for example, BN, MoS2, InSe, CdS, PtSe2, TI2O, SnS2, Ti2CO2 etc.- can exhibit coupled in-plane and out-of-plane ferroelectricity, thus yielding 2D intercorrelated ferroelectricsferroelectric physics. We further predict that such intercorrelated ferroelectrics could demonstrate many distinct properties, for example, electrical full control of spin textures in trilayer PtSe2 and electrical permanent control of valley-contrasting physics in four-layer VS2. Our finding opens a new direction for 2D intercorrelated ferroelectric research.
Recent research showed that the rotational degree of freedom in stacking 2D materials yields great changes in the electronic properties. Here we focus on an often overlooked question: are twisted geometries stable and what defines their rotational en ergy landscape? Our simulations show how epitaxy theory breaks down in these systems and we explain the observed behaviour in terms of an interplay between flexural phonons and the interlayer coupling, governed by Moire superlattice. Our argument applied to the well-studied MoS$_2$/Graphene system rationalize experimental results and could serve as guidance to design twistronics devices.
We investigate the van der Waals interactions in solid molecular hydrogen structures. We calculate enthalpy and the Gibbs free energy to obtain zero and finite temperature phase diagrams, respectively. We employ density functional theory (DFT) to cal culate the electronic structure and Density functional perturbation theory (DFPT) with van der Waals (vdW) functionals to obtain phonon spectra. We focus on the solid molecular $C2/c$, $Cmca$-12, $P6_3/m$, $Cmca$, and $Pbcn$ structures within the pressure range of 200 $<$ P $<$ 450 GPa. We propose two structures of the $C2/c$ and $Pbcn$ for phase III which are stabilized within different pressure range above 200 GPa. We find that vdW functionals have a big effect on vibrations and finite-temperature phase stability, however, different vdW functionals have different effects. We conclude that, in addition to the vdW interaction, a correct treatment of the high charge gradient limit is essential. We show that the dependence of molecular bond-lengths on exchange-correlation also has a considerable influence on the calculated metallization pressure, introducing errors of up to 100GPa.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا