ترغب بنشر مسار تعليمي؟ اضغط هنا

Beta functions for the duality-invariant sigma model

65   0   0.0 ( 0 )
 نشر من قبل Tom\\'as Codina T.Codina
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The $O(d,d)$ invariant worldsheet theory for bosonic string theory with $d$ abelian isometries is employed to compute the beta functions and Weyl anomaly at one-loop. We show that vanishing of the Weyl anomaly coefficients implies the equations of motion of the Maharana-Schwarz action. We give a self-contained introduction into the required techniques, including beta functions, the Weyl anomaly for two-dimensional sigma models and the background field method. This sets the stage for a sequel to this paper on generalizations to higher loops and $alpha$ corrections.



قيم البحث

اقرأ أيضاً

We study dualities in off-shell 4D N = 2 supersymmetric sigma-models, using the projective superspace approach. These include (i) duality between the real O(2n) and polar multiplets; and (ii) polar-polar duality. We demonstrate that the dual of any s uperconformal sigma-model is superconformal. Since N = 2 superconformal sigma-models (for which target spaces are hyperkahler cones) formulated in terms of polar multiplets are naturally associated with Kahler cones (which are target spaces for N = 1 superconformal sigma-models), polar-polar duality generates a transformation between different Kahler cones. In the non-superconformal case, we study implications of polar-polar duality for the sigma-model formulation in terms of N = 1 chiral superfields. In particular, we find the relation between the original hyperkahler potential and its dual. As an application of polar-polar duality, we study self-dual models.
We introduce and study conformal field theories specified by $W-$algebras commuting with certain set of screening charges. These CFTs possess perturbations which define integrable QFTs. We establish that these QFTs have local and non-local Integrals of Motion and admit the perturbation theory in the weak coupling region. We construct factorized scattering theory which is consistent with non-local Integrals of Motion and perturbation theory. In the strong coupling limit the $S-$matrix of this QFT tends to the scattering matrix of the $O(N)$ sigma model. The perturbation theory, Bethe anzatz technique, renormalization group approach and methods of conformal field theory are applied to show, that the constructed QFTs are dual to integrable deformation of $O(N)$ sigma-models.
We calculate the Green functions for a scalar field theory with quartic interactions for which the fields are multiplied with a generic translation invariant star product. Our analysis involves both noncommutative products, for which there is the can onical commutation relation among coordinates, and nonlocal commutative products. We give explicit expressions for the one-loop corrections to the two and four point functions. We find that the phenomenon of ultraviolet/infrared mixing is always a consequence of the presence of noncommuting variables. The commutative part of the product does not have the mixing.
59 - Sergei M. Kuzenko 2019
As an extension of the Ivanov-Zupnik approach to self-dual nonlinear electrodynamics in four dimensions [1,2], we reformulate U(1) duality-invariant nonlinear models for a gauge $(2p-1)$-form in $d=4p$ dimensions as field theories with manifestly U(1 ) invariant self-interactions. This reformulation is suitable to generate arbitrary duality-invariant nonlinear systems including those with higher derivatives.
59 - Chethan Krishnan 2019
Demanding $O(d,d)$-duality covariance, Hohm and Zwiebach have written down the action for the most general cosmology involving the metric, $b$-field and dilaton, to all orders in $alpha$ in the string frame. Remarkably, for an FRW metric-dilaton ansa tz the equations of motion turn out to be quite simple, except for the presence of an unknown function of a single variable. If this unknown function satisfies some simple properties, it allows de Sitter solutions in the string frame. In this note, we write down the Einstein frame analogues of these equations, and make some observations that make the system tractable. Perhaps surprisingly, we find that a necessary condition for de Sitter solutions to exist is that the unknown function must satisfy a certain second order non-linear ODE. The solutions of the ODE do not have a simple power series expansion compatible with the leading supergravity expectation. We discuss possible interpretations of this fact. After emphasizing that all (potential) string and Einstein frame de Sitter solutions have a running dilaton, we write down the most general cosmologies with a constant dilaton in string/Einstein frame: these have power law scale factors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا