ﻻ يوجد ملخص باللغة العربية
Batch Normalization (BN) is one of the key components for accelerating network training, and has been widely adopted in the medical image analysis field. However, BN only calculates the global statistics at the batch level, and applies the same affine transformation uniformly across all spatial coordinates, which would suppress the image contrast of different semantic structures. In this paper, we propose to incorporate the semantic class information into normalization layers, so that the activations corresponding to different regions (i.e., classes) can be modulated differently. We thus develop a novel DualNorm-UNet, to concurrently incorporate both global image-level statistics and local region-wise statistics for network normalization. Specifically, the local statistics are integrated by adaptively modulating the activations along different class regions via the learned semantic masks in the normalization layer. Compared with existing methods, our approach exploits semantic knowledge at normalization and yields more discriminative features for robust segmentation results. More importantly, our network demonstrates superior abilities in capturing domain-invariant information from multiple domains (institutions) of medical data. Extensive experiments show that our proposed DualNorm-UNet consistently improves the performance on various segmentation tasks, even in the face of more complex and variable data distributions. Code is available at https://github.com/lambert-x/DualNorm-Unet.
In the past few years, convolutional neural networks (CNNs) have achieved milestones in medical image analysis. Especially, the deep neural networks based on U-shaped architecture and skip-connections have been widely applied in a variety of medical
Recently, a growing interest has been seen in deep learning-based semantic segmentation. UNet, which is one of deep learning networks with an encoder-decoder architecture, is widely used in medical image segmentation. Combining multi-scale features i
The performance of deep segmentation models often degrades due to distribution shifts in image intensities between the training and test data sets. This is particularly pronounced in multi-centre studies involving data acquired using multi-vendor sca
Deep learning has successfully been leveraged for medical image segmentation. It employs convolutional neural networks (CNN) to learn distinctive image features from a defined pixel-wise objective function. However, this approach can lead to less out
Object segmentation plays an important role in the modern medical image analysis, which benefits clinical study, disease diagnosis, and surgery planning. Given the various modalities of medical images, the automated or semi-automated segmentation app