ترغب بنشر مسار تعليمي؟ اضغط هنا

Expanding on the Cardy-like limit of the superconformal index of 4d $mathcal{N}=1$ ABCD SCFTs

91   0   0.0 ( 0 )
 نشر من قبل Marco Fazzi
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the Cardy-like limit of the superconformal index of generic $mathcal{N}=1$ SCFTs with ABCD gauge algebra, providing strong evidence for a universal formula that captures the behavior of the index at finite order in the rank and in the fugacities associated to angular momenta. The formula extends previous results valid at lowest order, and generalizes them to generic SCFTs. We corroborate the validity of our proposal by studying several examples, beyond the well-understood toric class. We compute the index also for models without a weakly-coupled gravity dual, whose gravitational anomaly is not of order one.



قيم البحث

اقرأ أيضاً

In 4d $mathcal{N}=1$ superconformal field theories (SCFTs) the R-symmetry current, the stress-energy tensor, and the supersymmetry currents are grouped into a single object, the Ferrara-Zumino multiplet. In this work we study the most general form of three-point functions involving two Ferrara-Zumino multiplets and a third generic multiplet. We solve the constraints imposed by conservation in superspace and show that non-trivial solutions can only be found if the third multiplet is R-neutral and transforms in suitable Lorentz representations. In the process we give a prescription for counting independent tensor structures in superconformal three-point functions. Finally, we set the Grassmann coordinates of the Ferrara-Zumino multiplets to zero and extract all three-point functions involving two R-currents and a third conformal primary. Our results pave the way for bootstrapping the correlation function of four R-currents in 4d $mathcal{N}=1$ SCFTs.
We obtain the perturbative expansion of the free energy on $S^4$ for four dimensional Lagrangian ${cal N}=2$ superconformal field theories, to all orders in the t Hooft coupling, in the planar limit. We do so by using supersymmetric localization, aft er rewriting the 1-loop factor as an effective action involving an infinite number of single and double trace terms. The answer we obtain is purely combinatorial, and involves a sum over tree graphs. We also apply these methods to the perturbative expansion of the free energy at finite $N$, and to the computation of the vacuum expectation value of the 1/2 BPS circular Wilson loop, which in the planar limit involves a sum over rooted tree graphs.
We compute the planar limit of both the free energy and the expectation value of the $1/2$ BPS Wilson loop for four dimensional ${cal N}=2$ superconformal quiver theories, with a product of SU($N$)s as gauge group and bi-fundamental matter. Supersymm etric localization reduces the problem to a multi-matrix model, that we rewrite in the zero-instanton sector as an effective action involving an infinite number of double-trace terms, determined by the relevant extended Cartan matrix. We find that the results, as in the case of $mathcal{N}=2$ SCFTs with a simple gauge group, can be written as sums over tree graphs. For the $widehat{A_1}$ case, we find that the contribution of each tree can be interpreted as the partition function of a generalized Ising model defined on the tree; we conjecture that the partition functions of these models defined on trees satisfy the Lee-Yang property, i.e. all their zeros lie on the unit circle.
We initiate a systematic analysis of moduli spaces of vacua of four dimensional $mathcal{N}=3$ SCFTs. Our analysis is based on the one hand on the properties of $mathcal{N}=3$ chiral rings --- which we review in detail and contrast with chiral rings of theories with less supersymmetry --- and on the other hand on constraints coming from low-energy supersymmetry. This leads us to introduce a new type of geometric structure, which characterizes $mathcal{N}=3$ SCFT moduli spaces, and that we call $triple special Kahler$ (TSK). A rank-$n$ TSK moduli space has complex dimension $3n$, and is singular at complex co-dimension 3 subspaces where charged states become massless. The structure of singularities defines a stratification of the TSK space in terms of lower-dimensional TSK manifolds.
S-folds are a non-perturbative generalization of orientifold 3-planes which figure prominently in the construction of 4D $mathcal{N} = 3$ SCFTs and have also recently been used to realize examples of 4D $mathcal{N} = 2$ SCFTs. In this paper we develo p a general procedure for reading off the flavor symmetry experienced by D3-branes probing 7-branes in the presence of an S-fold. We develop an S-fold generalization of orientifold projection which applies to non-perturbative string junctions. This procedure leads to a different 4D flavor symmetry algebra depending on whether the S-fold supports discrete torsion. We also show that this same procedure allows us to read off admissible representations of the flavor symmetry in the associated 4D $mathcal{N} = 2$ SCFTs. Furthermore this provides a prescription for how to define F-theory in the presence of S-folds with discrete torsion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا