ترغب بنشر مسار تعليمي؟ اضغط هنا

Proton Mass Decomposition and Hadron Cosmological Constant

92   0   0.0 ( 0 )
 نشر من قبل Keh-Fei Liu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Keh-Fei Liu




اسأل ChatGPT حول البحث

Lattice results on sigma terms and global analysis of parton momentum fractions are used to give the quark and glue fractions of the proton mass and rest energy. The mass decomposition in terms of the trace of the energy-momentum tensor is renormalization group invariant. The decomposition of the rest energy from the Hamiltonian and the gravitational form factors are scheme and scale dependent. The separation of the energy-momentum tensor into the traceless part which is composed of the quark and glue parton momentum fractions and the trace part has the minimum scheme dependence. We identify the glue part of the trace anomaly $langle H_{beta}rangle $ as the vacuum energy from the glue condensate in the vacuum. From the metric term of the gravitational form factors, which is the stress part of the stress-energy-momentum tensor, we find that the trace part of the rest energy, dominated by $langle H_{beta}rangle$, gives a {it constant} restoring pressure which balances that from the traceless part of the Hamiltonian to confine the hadron, much like the cosmological constant Einstein introduced for a static universe. From a lattice calculation of $langle H_{beta}rangle$ in the charmonium, we deduce the associated string tension which turns out to be in good agreement with that from a Cornell potential which fits the charmonium spectrum.

قيم البحث

اقرأ أيضاً

Different decompositions (sum rules) for the proton mass have been proposed in the literature. All of them are related to the energy-momentum tensor in quantum chromodynamics. We review and revisit these decompositions by paying special attention to recent developments with regard to the renormalization of the energy-momentum tensor. The connection between the sum rules is discussed as well. We present numerical results for the various terms of the mass decompositions up to 3 loops in the strong coupling, and consider their scheme dependence. We also elaborate on the role played by the trace anomaly and the sigma terms.
We study the anomalous scale symmetry breaking effects on the proton mass in QCD due to quantum fluctuations at ultraviolet scales. We confirm that a novel contribution naturally arises as a part of the proton mass, which we call the quantum anomalou s energy (QAE). We discuss the QAE origins in both lattice and dimensional regularizations and demonstrate its role as a scheme-and-scale independent component in the mass decomposition. We further argue that QAE role in the proton mass resembles a dynamical Higgs mechanism, in which the anomalous scale symmetry breaking field generates mass scales through its vacuum condensate, as well as its static and dynamical responses to the valence quarks. We demonstrate some of our points in two simpler but closely related quantum field theories, namely the 1+1 dimensional non-linear sigma model in which QAE is non-perturbative and scheme-independent, and QED where the anomalous energy effect is perturbative calculable.
We report results on the proton mass decomposition and also on related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of $N_f = 2+1$ DWF configurations with three lattice spacings and three volu mes, and several pion masses including the physical pion mass. With fully non-perturbative renormalization (and universal normalization on both quark and gluon), we find that the quark energy and glue field energy contribute 33(4)(4)% and 37(5)(4)% respectively in the $overline{MS}$ scheme at $mu = 2$ GeV. A quarter of the trace anomaly gives a 23(1)(1)% contribution to the proton mass based on the sum rule, given 9(2)(1)% contribution from the $u, d,$ and $s$ quark scalar condensates. The $u,d,s$ and glue momentum fractions in the $overline{MS}$ scheme are in good agreement with global analyses at $mu = 2$ GeV.
The Cottingham formula expresses the leading contribution of the electromagnetic interaction to the proton-neutron mass difference as an integral over the forward Compton amplitude. Since quarks and gluons reggeize, the dispersive representation of t his amplitude requires a subtraction. We assume that the asymptotic behaviour is dominated by Reggeon exchange. This leads to a sum rule that expresses the subtraction function in terms of measurable quantities. The evaluation of this sum rule leads to $m_{QED}^{p-n}=0.58pm 0.16,mbox{MeV}$.
We report a quark spin calculation from the anomalous Ward identity with overlap fermions on 2+1 flavor dynamical fermion configurations with light sea quark masses. Such a formulation decomposes the divergence of the flavor-singlet axial-vector curr ent into a quark pseudoscalar term and a triangle anomaly term, flavor by flavor. A large negative contribution from the anomaly term is observed and it is canceled within errors by the contribution from the pseudoscalar term in the disconnected insertion in the heavy quark region. On the other hand, net negative contributions are obtained for the light and strange quarks in the disconnected insertion, since their quark pseudoscalar terms are smaller than that of the heavy quark. Our results are obtained from the 2+1 flavor domain wall fermion configurations on the 24^3*64 lattice with a-1 = 1.78(5) GeV and the light sea quark at m_{pi} = 330 MeV. We use the overlap fermion for the valence and the quark loop so that the renormalization constants Z_m and Z_P cancel in the pseudoscalar operator 2mP. In addition, the overlap Dirac operator is used to calculate the local topological charge in the anomaly so that there is no renormalization for the anomaly term either. In this study, we find the total quark spin to be small mainlyly due to the large negative anomaly term which could be the source for the proton spin crisis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا