ﻻ يوجد ملخص باللغة العربية
We construct a continuous one parameter family of $AdS_4times S^1times S^5$ S-fold solutions of type IIB string theory which have nontrivial $SL(2,mathbb{Z})$ monodromy in the $S^1$ direction. The solutions span a subset of a conformal manifold that contains the known $mathcal{N}=4$ S-fold SCFT in $d=3$, and generically preserve $mathcal{N}=2$ supersymmetry. We also construct RG flows across dimensions, from $AdS_5times S^5$, dual to $mathcal{N}=4$, $d=4$ SYM compactified with a twisted spatial circle, to various $AdS_4times S^1times S^5$ S-fold solutions, dual to $d=3$ SCFTs. We construct additional flows between the $AdS_5$ dual of the Leigh-Strassler SCFT and an $mathcal{N}=2$ S-fold as well as RG flows between various S-folds.
We show that there is a non-trivial relationship between the dilaton of IIB supergravity, and the coset of scalar fields in five-dimensional, gauged N=8 supergravity. This has important consequences for the running of the gauge coupling in massive pe
We construct infinite new classes of $AdS_4times S^1times S^5$ solutions of type IIB string theory which have non-trivial $SL(2,mathbb{Z})$ monodromy along the $S^1$ direction. The solutions are supersymmetric and holographically dual, generically, t
We deform a defect conformal field theory by an exactly marginal bulk operator and we consider the dependence on the marginal coupling of flat and spherical defect expectation values. For even dimensional spherical defects we find a logarithmic diver
Boundary, defect, and interface RG flows, as exemplified by the famous Kondo model, play a significant role in the theory of quantum fields. We study in detail the holographic dual of a non-conformal supersymmetric impurity in the D1/D5 CFT. Its RG f
Sum rules connecting low-energy observables to high-energy physics are an interesting way to probe the mechanism of inflation and its ultraviolet origin. Unfortunately, such sum rules have proven difficult to study in a cosmological setting. Motivate