ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of Large Amplitude Viscous Shock Wave for 1-D Isentropic Navier-Stokes System in the Half Space

139   0   0.0 ( 0 )
 نشر من قبل Lin Chang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Lin Chang




اسأل ChatGPT حول البحث

In this paper, the asymptotic-time behavior of solutions to an initial boundary value problem in the half space for 1-D isentropic Navier-Stokes system is investigated. It is shown that the viscous shock wave is stable for an impermeable wall problem where the velocity is zero on the boundary provided that the shock wave is initially far away from the boundary. Moreover, the strength of shock wave could be arbitrarily large. This work essentially improves the result of [A. Matsumura, M. Mei, Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary, Arch. Ration. Mech. Anal., 146(1): 1-22, 1999], where the strength of shock wave is sufficiently small.



قيم البحث

اقرأ أيضاً

89 - Lin Chang 2021
In this paper, the large time behavior of solutions of 1-D isentropic Navier-Stokes system is investigated. It is shown that a composite wave consisting of two viscous shock waves is stable for the Cauchy problem provided that the two waves are initi ally far away from each other. Moreover the strengths of two waves could be arbitrarily large.
308 - Linglong Du , Haitao Wang 2017
In this paper, we investigate the pointwise behavior of the solution for the compressible Navier-Stokes equations with mixed boundary condition in half space. Our results show that the leading order of Greens function for the linear system in half sp ace are heat kernels propagating with sound speed in two opposite directions and reflected heat kernel (due to the boundary effect) propagating with positive sound speed. With the strong wave interactions, the nonlinear analysis exhibits the rich wave structure: the diffusion waves interact with each other and consequently, the solution decays with algebraic rate.
126 - Yulin Ye , Yaniqng Wang , Wei Wei 2021
It is well-known that a Leray-Hopf weak solution in $L^4 (0,T; L^4(Omega))$ for the incompressible Navier-Stokes system is persistence of energy due to Lions [19]. In this paper, it is shown that Lionss condition for energy balance is also valid for the weak solutions of the isentropic compressible Navier-Stokes equations allowing vacuum under suitable integrability conditions on the density and its derivative. This allows us to establish various sufficient conditions implying energy equality for the compressible flow as well as the non-homogenous incompressible Navier-Stokes equations. This is an improvement of corresponding results obtained by Yu in [32, Arch. Ration. Mech. Anal., 225 (2017)], and our criterion via the gradient of the velocity partially answers a question posed by Liang in [18, Proc. Roy. Soc. Edinburgh Sect. A (2020)].
We study the long-time behavior an extended Navier-Stokes system in $R^2$ where the incompressibility constraint is relaxed. This is one of several reduced models of Grubb and Solonnikov 89 and was revisited recently (Liu, Liu, Pego 07) in bounded do mains in order to explain the fast convergence of certain numerical schemes (Johnston, Liu 04). Our first result shows that if the initial divergence of the fluid velocity is mean zero, then the Oseen vortex is globally asymptotically stable. This is the same as the Gallay Wayne 05 result for the standard Navier-Stokes equations. When the initial divergence is not mean zero, we show that the analogue of the Oseen vortex exists and is stable under small perturbations. For completeness, we also prove global well-posedness of the system we study.
145 - Hajer Bahouri 2013
We prove a weak stability result for the three-dimensional homogeneous incompressible Navier-Stokes system. More precisely, we investigate the following problem : if a sequence $(u_{0, n})_{nin N}$ of initial data, bounded in some scaling invariant s pace, converges weakly to an initial data $u_0$ which generates a global regular solution, does $u_{0, n}$ generate a global regular solution ? A positive answer in general to this question would imply global regularity for any data, through the following examples $u_{0,n} = n vf_0(ncdot)$ or $u_{0,n} = vf_0(cdot-x_n)$ with $|x_n|to infty$. We therefore introduce a new concept of weak convergence (rescaled weak convergence) under which we are able to give a positive answer. The proof relies on profile decompositions in anisotropic spaces and their propagation by the Navier-Stokes equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا