ﻻ يوجد ملخص باللغة العربية
Quantum resource theory formulations of thermodynamics offer a versatile tool for the study of fundamental limitations to the efficiency of physical processes, independently of the microscopic details governing their dynamics. Despite the ubiquitous presence of non-Markovian dynamics in open quantum systems at the nanoscale, rigorous proofs of their beneficial effects on the efficiency of quantum dynamical processes at the bio-molecular level have not been reported yet. Here we combine the resource theory of athermality with concepts from the theory of divisibility classes for quantum channels, to prove that memory effects can increase the efficiency of photoisomerization to levels that are not achievable under a purely thermal Markovian (i.e. memoryless) evolution. This provides rigorous evidence that memory effects can provide a resource in biological quantum dynamics, and, more generally, quantum thermodynamics at the nanoscale.
We study the dynamics of an open quantum system interacting with a non-thermal bath. Here, non-thermal means that the bath modes do not need to have the same temperature, but they have an effective temperature distribution. We find that, when a quant
Using the paradigm of information backflow to characterize a non-Markovian evolution, we introduce so-called precursors of non-Markovianity, i.e. necessary properties that the system and environment state must exhibit at earlier times in order for an
We investigate the asymptotic dynamics of exact quantum Brownian motion. We find that non-Markovianity can persist in the long-time limit, and that in general the asymptotic behaviour depends strongly on the system-environment coupling and the spectral density of the bath.
We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix whi
We establish a convex resource theory of non-Markovianity under the constraint of small time intervals within the temporal evolution. We construct the free operations, free states and a generalized bona-fide measure of non-Markovianity. The framework