ﻻ يوجد ملخص باللغة العربية
Employing recent advances in response theory and nonequilibrium ensemble reweighting, we study the dynamic and static correlations that give rise to an electric field-dependent ionic conductivity in electrolyte solutions. We consider solutions modeled with both implicit and explicit solvents, with different dielectric properties, and at multiple concentrations. Implicit solvent models at low concentrations and small dielectric constants exhibit strongly field-dependent conductivities. We compared these results to the Onsager-Wilson theory of the Wien effect, which provides a qualitatively consistent prediction at low concentrations and high static dielectric constants, but is inconsistent away from these regimes. The origin of the discrepancy is found to be increased ion correlations under these conditions. Explicit solvent effects act to suppress nonlinear responses, yielding a weakly field-dependent conductivity over the range of physically realizable field strengths. By decomposing the relevant time correlation functions, we find that the insensitivity of the conductivity to the field results from the persistent frictional forces on the ions from the solvent. Our findings illustrate the utility of nonequilibrium response theory in rationalizing nonlinear transport behavior.
We study hydrodynamic fluctuations in a compressible and viscous fluid film confined between two rigid, no-slip, parallel plates, where one of the plates is kept fixed, while the other one is driven in small-amplitude, translational, displacements ar
By combining analytical results and simulations of various coarse-grained models we investigate the minimal energy shape of DNA minicircles which are torsionally constrained by an imposed over or undertwist. We show that twist-bend coupling, a cross
The phase diagram of star polymer solutions in a good solvent is obtained over a wide range of densities and arm numbers by Monte Carlo simulations. The effective interaction between the stars is modeled by an ultrasoft pair potential which is logari
We study effective two- and three-body interactions between non-active colloidal inclusions in an active bath of chiral or non-chiral particles, using Brownian Dynamics simulations within a standard, two-dimensional model of disk-shaped inclusions an
It is often desirable to enhance the motility of active nano- or microscale swimmers such as, e.g., self-propelled Janus particles as agents of chemical reactions or weak sperm cells for better chances of successful fertilization. Here we tackle this