ترغب بنشر مسار تعليمي؟ اضغط هنا

Discrimination of background events in the PolarLight X-ray polarimeter

140   0   0.0 ( 0 )
 نشر من قبل Hua Feng
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

PolarLight is a space-borne X-ray polarimeter that measures the X-ray polarization via electron tracking in an ionization chamber. It is a collimated instrument and thus suffers from the background on the whole detector plane. The majority of background events are induced by high energy charged particles and show ionization morphologies distinct from those produced by X-rays of interest. Comparing on-source and off-source observations, we find that the two datasets display different distributions on image properties. The boundaries between the source and background distributions are obtained and can be used for background discrimination. Such a means can remove over 70% of the background events measured with PolarLight. This approaches the theoretical upper limit of the background fraction that is removable and justifies its effectiveness. For observations with the Crab nebula, the background contamination decreases from 25% to 8% after discrimination, indicative of a polarimetric sensitivity of around 0.2 Crab for PolarLight. This work also provides insights into future X-ray polarimetric telescopes.



قيم البحث

اقرأ أيضاً

68 - Jiahui Huang , Hua Feng , Hong Li 2021
PolarLight is a gas pixel X-ray polarimeter mounted on a CubeSat, which was launched into a Sun-synchronous orbit in October 2018. We build a mass model of the whole CubeSat with the Geant4 toolkit to simulate the background induced by the cosmic X-r ay background (CXB) and high energy charged particles in the orbit. The simulated energy spectra and morphologies of event images both suggest that the measured background with PolarLight is dominated by high energy electrons, with a minor contribution from protons and the CXB. The simulation reveals that, in the energy range of 2-8 keV, there are roughly 28% of the background events are caused by energy deposit from a secondary electron with an energy of a few keV, in a physical process identical to the detection of X-rays. Thus, this fraction of background cannot be discriminated from X-ray events. The background distribution is uneven on the detector plane, with an enhancement near the edges. The edge effect is because high energy electrons tend to produce long tracks, which are discarded by the readout electronics unless they have partial energy deposits near the edges. The internal background rate is expected to be around 6 x 10^-3 counts/s/cm2 in 2-8 keV if an effective particle discrimination algorithm can be applied. This indicates that the internal background should be negligible for future focusing X-ray polarimeters with a focal size in the order of mm.
The performance of the Time Projection Chamber (TPC) polarimeter for the Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) Small Explorer was evaluated using polarized and unpolarized X-ray sources. The PRAXyS mission will enable expl oration of the universe through X-ray polarimetry in the 2-10 keV energy band. We carried out performance tests of the polarimeter at the Brookhaven National Laboratory, National Synchrotron Light Source (BNL-NSLS) and at NASAs Goddard Space Flight Center. The polarimeter was tested with linearly polarized, monochromatic X-rays at 11 different energies between 2.5 and 8.0 keV. At maximum sensitivity, the measured modulation factors at 2.7, 4.5 and 8.0 keV are 27%, 43% and 59%, respectively and the measured angle of polarization is consistent with the expected value at all energies. Measurements with a broadband, unpolarized X-ray source placed a limit of less than 1% on false polarization in the PRAXyS polarimeter.
X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, neutron stars, and gamma-ray bursts. We designed, built and tested a X -ray polarimeter, X-Calibur, to be used in the focal plane of the balloon-borne InFOCuS grazing incidence X-ray telescope. X-Calibur combines a low-Z scatterer with a CZT detector assembly to measure the polarization of 20-80keV X-rays making use of the fact that polarized photons scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of ~80%. The X-Calibur detector assembly is completed, tested, and fully calibrated. The response to a polarized X-ray beam was measured successfully at the Cornell High Energy Synchrotron Source. This paper describes the design, calibration and performance of the X-Calibur polarimeter. In principle, a similar space-borne scattering polarimeter could operate over the broader 2-100keV energy band.
461 - Rishin P.V. 2010
We describe the current status of the design and development of a Thomson X-ray polarimeter suitable for a small satellite mission. Currently we are considering two detector geometries, one using rectangular detectors placed on four sides of a scatte ring element and the other using a single cylindrical detector with the scattering element at the center. The rectangular detector configuration has been fabricated and tested. The cylindrical detector is currently under fabrication. In order to compensate any pointing offset of the satellite, a collimator with a flat topped response has been developed that provides a constant effective area over an angular range. We have also developed a double crystal monochromator/polariser for the purpose of test and calibration of the polarimeter. Preliminary test results from the developmental activities are presented here.
X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polar imeter X-Calibur to be used in the focal plane of the InFOCuS grazing incidence hard X-ray telescope. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 10-80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of order unity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا