ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Regional Memory Network for Video Object Segmentation

111   0   0.0 ( 0 )
 نشر من قبل Haozhe Xie
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, several Space-Time Memory based networks have shown that the object cues (e.g. video frames as well as the segmented object masks) from the past frames are useful for segmenting objects in the current frame. However, these methods exploit the information from the memory by global-to-global matching between the current and past frames, which lead to mismatching to similar objects and high computational complexity. To address these problems, we propose a novel local-to-local matching solution for semi-supervised VOS, namely Regional Memory Network (RMNet). In RMNet, the precise regional memory is constructed by memorizing local regions where the target objects appear in the past frames. For the current query frame, the query regions are tracked and predicted based on the optical flow estimated from the previous frame. The proposed local-to-local matching effectively alleviates the ambiguity of similar objects in both memory and query frames, which allows the information to be passed from the regional memory to the query region efficiently and effectively. Experimental results indicate that the proposed RMNet performs favorably against state-of-the-art methods on the DAVIS and YouTube-VOS datasets.



قيم البحث

اقرأ أيضاً

128 - Kai Xu , Angela Yao 2021
We propose an efficient inference framework for semi-supervised video object segmentation by exploiting the temporal redundancy of the video. Our method performs inference on selected keyframes and makes predictions for other frames via propagation b ased on motion vectors and residuals from the compressed video bitstream. Specifically, we propose a new motion vector-based warping method for propagating segmentation masks from keyframes to other frames in a multi-reference manner. Additionally, we propose a residual-based refinement module that can correct and add detail to the block-wise propagated segmentation masks. Our approach is flexible and can be added on top of existing video object segmentation algorithms. With STM with top-k filtering as our base model, we achieved highly competitive results on DAVIS16 and YouTube-VOS with substantial speedups of up to 4.9X with little loss in accuracy.
This paper presents a simple yet effective approach to modeling space-time correspondences in the context of video object segmentation. Unlike most existing approaches, we establish correspondences directly between frames without re-encoding the mask features for every object, leading to a highly efficient and robust framework. With the correspondences, every node in the current query frame is inferred by aggregating features from the past in an associative fashion. We cast the aggregation process as a voting problem and find that the existing inner-product affinity leads to poor use of memory with a small (fixed) subset of memory nodes dominating the votes, regardless of the query. In light of this phenomenon, we propose using the negative squared Euclidean distance instead to compute the affinities. We validated that every memory node now has a chance to contribute, and experimentally showed that such diversified voting is beneficial to both memory efficiency and inference accuracy. The synergy of correspondence networks and diversified voting works exceedingly well, achieves new state-of-the-art results on both DAVIS and YouTubeVOS datasets while running significantly faster at 20+ FPS for multiple objects without bells and whistles.
How to make a segmentation model efficiently adapt to a specific video and to online target appearance variations are fundamentally crucial issues in the field of video object segmentation. In this work, a graph memory network is developed to address the novel idea of learning to update the segmentation model. Specifically, we exploit an episodic memory network, organized as a fully connected graph, to store frames as nodes and capture cross-frame correlations by edges. Further, learnable controllers are embedded to ease memory reading and writing, as well as maintain a fixed memory scale. The structured, external memory design enables our model to comprehensively mine and quickly store new knowledge, even with limited visual information, and the differentiable memory controllers slowly learn an abstract method for storing useful representations in the memory and how to later use these representations for prediction, via gradient descent. In addition, the proposed graph memory network yields a neat yet principled framework, which can generalize well both one-shot and zero-shot video object segmentation tasks. Extensive experiments on four challenging benchmark datasets verify that our graph memory network is able to facilitate the adaptation of the segmentation network for case-by-case video object segmentation.
Psychological studies have found that human visual tracking system involves learning, memory, and planning. Despite recent successes, not many works have focused on memory and planning in deep learning based tracking. We are thus interested in memory augmented network, where an external memory remembers the evolving appearance of the target (foreground) object without backpropagation for updating weights. Our Dual Augmented Memory Network (DAWN) is unique in remembering both target and background, and using an improved attention LSTM memory to guide the focus on memorized features. DAWN is effective in unsupervised tracking in handling total occlusion, severe motion blur, abrupt changes in target appearance, multiple object instances, and similar foreground and background features. We present extensive quantitative and qualitative experimental comparison with state-of-the-art methods including top contenders in recent VOT challenges. Notably, despite the straightforward implementation, DAWN is ranked third in both VOT2016 and VOT2017 challenges with excellent success rate among all VOT fast trackers running at fps > 10 in unsupervised tracking in both challenges. We propose DAWN-RPN, where we simply augment our memory and attention LSTM modules to the state-of-the-art SiamRPN, and report immediate performance gain, thus demonstrating DAWN can work well with and directly benefit other models to handle difficult cases as well.
128 - Xiaohui Zeng , Renjie Liao , Li Gu 2019
In this paper, we propose the differentiable mask-matching network (DMM-Net) for solving the video object segmentation problem where the initial object masks are provided. Relying on the Mask R-CNN backbone, we extract mask proposals per frame and fo rmulate the matching between object templates and proposals at one time step as a linear assignment problem where the cost matrix is predicted by a CNN. We propose a differentiable matching layer by unrolling a projected gradient descent algorithm in which the projection exploits the Dykstras algorithm. We prove that under mild conditions, the matching is guaranteed to converge to the optimum. In practice, it performs similarly to the Hungarian algorithm during inference. Meanwhile, we can back-propagate through it to learn the cost matrix. After matching, a refinement head is leveraged to improve the quality of the matched mask. Our DMM-Net achieves competitive results on the largest video object segmentation dataset YouTube-VOS. On DAVIS 2017, DMM-Net achieves the best performance without online learning on the first frames. Without any fine-tuning, DMM-Net performs comparably to state-of-the-art methods on SegTrack v2 dataset. At last, our matching layer is very simple to implement; we attach the PyTorch code ($<50$ lines) in the supplementary material. Our code is released at https://github.com/ZENGXH/DMM_Net.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا