ترغب بنشر مسار تعليمي؟ اضغط هنا

AQEyes: Visual Analytics for Anomaly Detection and Examination of Air Quality Data

187   0   0.0 ( 0 )
 نشر من قبل Dongyu Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Anomaly detection plays a key role in air quality analysis by enhancing situational awareness and alerting users to potential hazards. However, existing anomaly detection approaches for air quality analysis have their own limitations regarding parameter selection (e.g., need for extensive domain knowledge), computational expense, general applicability (e.g., require labeled data), interpretability, and the efficiency of analysis. Furthermore, the poor quality of collected air quality data (inconsistently formatted and sometimes missing) also increases the difficulty of analysis substantially. In this paper, we systematically formulate design requirements for a system that can solve these limitations and then propose AQEyes, an integrated visual analytics system for efficiently monitoring, detecting, and examining anomalies in air quality data. In particular, we propose a unified end-to-end tunable machine learning pipeline that includes several data pre-processors and featurizers to deal with data quality issues. The pipeline integrates an efficient unsupervised anomaly detection method that works without the use of labeled data and overcomes the limitations of existing approaches. Further, we develop an interactive visualization system to visualize the outputs from the pipeline. The system incorporates a set of novel visualization and interaction designs, allowing analysts to visually examine air quality dynamics and anomalous events in multiple scales and from multiple facets. We demonstrate the performance of this pipeline through a quantitative evaluation and show the effectiveness of the visualization system using qualitative case studies on real-world datasets.



قيم البحث

اقرأ أيضاً

202 - Raymond Li 2021
The proliferation of text messaging for mobile health is generating a large amount of patient-doctor conversations that can be extremely valuable to health care professionals. We present ConVIScope, a visual text analytic system that tightly integrat es interactive visualization with natural language processing in analyzing patient-doctor conversations. ConVIScope was developed in collaboration with healthcare professionals following a user-centered iterative design. Case studies with six domain experts suggest the potential utility of ConVIScope and reveal lessons for further developments.
Many processes, from gene interaction in biology to computer networks to social media, can be modeled more precisely as temporal hypergraphs than by regular graphs. This is because hypergraphs generalize graphs by extending edges to connect any numbe r of vertices, allowing complex relationships to be described more accurately and predict their behavior over time. However, the interactive exploration and seamless refinement of such hypergraph-based prediction models still pose a major challenge. We contribute Hyper-Matrix, a novel visual analytics technique that addresses this challenge through a tight coupling between machine-learning and interactive visualizations. In particular, the technique incorporates a geometric deep learning model as a blueprint for problem-specific models while integrating visualizations for graph-based and category-based data with a novel combination of interactions for an effective user-driven exploration of hypergraph models. To eliminate demanding context switches and ensure scalability, our matrix-based visualization provides drill-down capabilities across multiple levels of semantic zoom, from an overview of model predictions down to the content. We facilitate a focused analysis of relevant connections and groups based on interactive user-steering for filtering and search tasks, a dynamically modifiable partition hierarchy, various matrix reordering techniques, and interactive model feedback. We evaluate our technique in a case study and through formative evaluation with law enforcement experts using real-world internet forum communication data. The results show that our approach surpasses existing solutions in terms of scalability and applicability, enables the incorporation of domain knowledge, and allows for fast search-space traversal. With the technique, we pave the way for the visual analytics of temporal hypergraphs in a wide variety of domains.
Visual analytics for machine learning has recently evolved as one of the most exciting areas in the field of visualization. To better identify which research topics are promising and to learn how to apply relevant techniques in visual analytics, we s ystematically review 259 papers published in the last ten years together with representative works before 2010. We build a taxonomy, which includes three first-level categories: techniques before model building, techniques during model building, and techniques after model building. Each category is further characterized by representative analysis tasks, and each task is exemplified by a set of recent influential works. We also discuss and highlight research challenges and promising potential future research opportunities useful for visual analytics researchers.
104 - Hai Dang , Daniel Buschek 2021
This paper presents GestureMap, a visual analytics tool for gesture elicitation which directly visualises the space of gestures. Concretely, a Variational Autoencoder embeds gestures recorded as 3D skeletons on an interactive 2D map. GestureMap furth er integrates three computational capabilities to connect exploration to quantitative measures: Leveraging DTW Barycenter Averaging (DBA), we compute average gestures to 1) represent gesture groups at a glance; 2) compute a new consensus measure (variance around average gesture); and 3) cluster gestures with k-means. We evaluate GestureMap and its concepts with eight experts and an in-depth analysis of published data. Our findings show how GestureMap facilitates exploring large datasets and helps researchers to gain a visual understanding of elicited gesture spaces. It further opens new directions, such as comparing elicitations across studies. We discuss implications for elicitation studies and research, and opportunities to extend our approach to additional tasks in gesture elicitation.
Event sequence data is increasingly available in various application domains, such as business process management, software engineering, or medical pathways. Processes in these domains are typically represented as process diagrams or flow charts. So far, various techniques have been developed for automatically generating such diagrams from event sequence data. An open challenge is the visual analysis of drift phenomena when processes change over time. In this paper, we address this research gap. Our contribution is a system for fine-granular process drift detection and corresponding visualizations for event logs of executed business processes. We evaluated our system both on synthetic and real-world data. On synthetic logs, we achieved an average F-score of 0.96 and outperformed all the state-of-the-art methods. On real-world logs, we identified all types of process drifts in a comprehensive manner. Finally, we conducted a user study highlighting that our visualizations are easy to use and useful as perceived by process mining experts. In this way, our work contributes to research on process mining, event sequence analysis, and visualization of temporal data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا