ﻻ يوجد ملخص باللغة العربية
Anomaly detection plays a key role in air quality analysis by enhancing situational awareness and alerting users to potential hazards. However, existing anomaly detection approaches for air quality analysis have their own limitations regarding parameter selection (e.g., need for extensive domain knowledge), computational expense, general applicability (e.g., require labeled data), interpretability, and the efficiency of analysis. Furthermore, the poor quality of collected air quality data (inconsistently formatted and sometimes missing) also increases the difficulty of analysis substantially. In this paper, we systematically formulate design requirements for a system that can solve these limitations and then propose AQEyes, an integrated visual analytics system for efficiently monitoring, detecting, and examining anomalies in air quality data. In particular, we propose a unified end-to-end tunable machine learning pipeline that includes several data pre-processors and featurizers to deal with data quality issues. The pipeline integrates an efficient unsupervised anomaly detection method that works without the use of labeled data and overcomes the limitations of existing approaches. Further, we develop an interactive visualization system to visualize the outputs from the pipeline. The system incorporates a set of novel visualization and interaction designs, allowing analysts to visually examine air quality dynamics and anomalous events in multiple scales and from multiple facets. We demonstrate the performance of this pipeline through a quantitative evaluation and show the effectiveness of the visualization system using qualitative case studies on real-world datasets.
The proliferation of text messaging for mobile health is generating a large amount of patient-doctor conversations that can be extremely valuable to health care professionals. We present ConVIScope, a visual text analytic system that tightly integrat
Many processes, from gene interaction in biology to computer networks to social media, can be modeled more precisely as temporal hypergraphs than by regular graphs. This is because hypergraphs generalize graphs by extending edges to connect any numbe
Visual analytics for machine learning has recently evolved as one of the most exciting areas in the field of visualization. To better identify which research topics are promising and to learn how to apply relevant techniques in visual analytics, we s
This paper presents GestureMap, a visual analytics tool for gesture elicitation which directly visualises the space of gestures. Concretely, a Variational Autoencoder embeds gestures recorded as 3D skeletons on an interactive 2D map. GestureMap furth
Event sequence data is increasingly available in various application domains, such as business process management, software engineering, or medical pathways. Processes in these domains are typically represented as process diagrams or flow charts. So