ﻻ يوجد ملخص باللغة العربية
Let $E subset mathbb R^{n+1}$ be a parabolic uniformly rectifiable set. We prove that every bounded solution $u$ to $$partial_tu- Delta u=0, quad text{in} quad mathbb R^{n+1}setminus E$$ satisfies a Carleson measure estimate condition. An important technical novelty of our work is that we develop a corona domain approximation scheme for $E$ in terms of regular Lip(1/2,1) graph domains. This approximation scheme has an analogous elliptic version which is an improvement of the known results in that setting.
For weak solutions to the evolutional $p$-Laplace equation with a time-dependent Radon measure on the right hand side we obtain pointwise estimates via a nonlinear parabolic potential.
We study two notions of Dirichlet problem associated with BV energy minimizers (also called functions of least gradient) in bounded domains in metric measure spaces whose measure is doubling and supports a $(1,1)$-Poincare inequality. Since one of th
In this paper, we derive some quantitative estimates for uniformly-rotating vortex patches. We prove that if a non-radial simply-connected patch $D$ is uniformly-rotating with small angular velocity $0 < Omega ll 1$, then the outmost point of the pat
This paper studies the relationship between vector-valued BMO functions and the Carleson measures defined by their gradients. Let $dA$ and $dm$ denote Lebesgue measures on the unit disc $D$ and the unit circle $mathbb T$, respectively. For $1< q<inft
For a class of divergence type quasi-linear degenerate parabolic equations with a Radon measure on the right hand side we derive pointwise estimates for solutions via nonlinear Wolff potentials.