ترغب بنشر مسار تعليمي؟ اضغط هنا

Motional narrowing, ballistic transport, and trapping of room-temperature exciton polaritons in an atomically-thin semiconductor

225   0   0.0 ( 0 )
 نشر من قبل Elena Ostrovskaya
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomically-thin transition metal dichalcogenide crystals (TMDCs) hold great promise for future semiconductor optoelectronics due to their unique electronic and optical properties. In particular, electron-hole pairs (excitons) in TMDCs are stable at room temperature and interact strongly with light. When TMDCs are embedded in an optical microcavity, the excitons can hybridise with cavity photons to form exciton polaritons (polaritons herein), which display both ultrafast velocities and strong interactions. The ability to manipulate and trap polaritons on a microchip is critical for future applications. Here, we create a potential landscape for room-temperature polaritons in monolayer WS$_2$, and demonstrate their free propagation and trapping. We show that the effect of dielectric disorder, which restricts the diffusion of WS$_2$ excitons and broadens their spectral resonance, is dramatically reduced in the strong exciton-photon coupling regime leading to motional narrowing. This enables the ballistic transport of WS$_2$ polaritons across tens of micrometers with an extended range of partial first-order coherence. Moreover, the dephasing of trapped polaritons is dramatically suppressed compared to both WS$_2$ excitons and free polaritons. Our results demonstrate the possibility of long-range transport and efficient trapping of TMDC polaritons in ambient conditions.



قيم البحث

اقرأ أيضاً

Spin-orbit coupling is a fundamental mechanism that connects the spin of a charge carrier with its momentum. Likewise, in the optical domain, a synthetic spin-orbit coupling is accessible, for instance, by engineering optical anisotropies in photonic materials. Both, akin, yield the possibility to create devices directly harnessing spin- and polarization as information carriers. Atomically thin layers of transition metal dichalcogenides provide a new material platform which promises intrinsic spin-valley Hall features both for free carriers, two-particle excitations (excitons), as well as for photons. In such materials, the spin of an exciton is closely linked to the high-symmetry point in reciprocal space it emerges from. Here, we demonstrate, that spin, and hence valley selective propagation is accessible in an atomically thin layer of MoSe2, which is strongly coupled to a microcavity photon mode. We engineer a wire-like device, where we can clearly trace the flow, and the helicity of exciton-polaritons expanding along a channel. By exciting a coherent superposition of K and K- tagged polaritons, we observe valley selective expansion of the polariton cloud without neither any applied external magnetic fields nor coherent Rayleigh scattering. Unlike the valley Hall effect for TMDC excitons, the observed optical valley Hall effect (OVHE) strikingly occurs on a macroscopic scale, and clearly reveals the potential for applications in spin-valley locked photonic devices.
Observations of polariton condensation in semiconductor microcavities suggest that polaritons can be exploited as a novel type of laser with low input-power requirements. The low-excitation regime is approximately equivalent to thermal equilibrium, a nd a higher excitation results in more dominant nonequilibrium features. Although standard photon lasing has been experimentally observed in the high excitation regime, e-h pair binding can still remain even in the high-excitation regime theoretically. Therefore, the photoluminescence with a different photon lasing mechanism is predicted to be different from that with a standard photon lasing. In this paper, we report the temperature dependence of the change in photoluminescence with the excitation density. The second threshold behavior transited to the standard photon lasing is not measured at a low-temperature, high-excitation power regime. Our results suggest that there may still be an electron--hole pair at this regime to give a different photon lasing mechanism.
The emergence of two-dimensional crystals has revolutionized modern solid-state physics. From a fundamental point of view, the enhancement of charge carrier correlations has sparked enormous research activities in the transport- and quantum optics co mmunities. One of the most intriguing effects, in this regard, is the bosonic condensation and spontaneous coherence of many-particle complexes. Here, we find compelling evidence of bosonic condensation of exciton-polaritons emerging from an atomically thin crystal of MoSe2 embedded in a dielectric microcavity under optical pumping. The formation of the condensate manifests itself in a sudden increase of luminescence intensity in a threshold-like manner, and a significant spin-polarizability in an externally applied magnetic field. Spatial coherence is mapped out via highly resolved real-space interferometry, revealing a spatially extended condensate. Our device represents a decisive step towards the implementation of coherent light-sources based on atomically thin crystals, as well as non-linear, valleytronic coherent devices.
Strong spin-orbit coupling and inversion symmetry breaking in transition metal dichalcogenide monolayers yield the intriguing effects of valley-dependent optical selection rules. As such, it is possible to substantially polarize valley excitons with chiral light and furthermore create coherent superpositions of K and K- polarized states. Yet, at ambient conditions dephasing usually becomes too dominant, and valley coherence typically is not observable. Here, we demonstrate that valley coherence is, however, clearly observable for a single monolayer of WSe2, if it is strongly coupled to the optical mode of a high quality factor microcavity. The azimuthal vector, representing the phase of the valley coherent superposition, can be directly manipulated by applying magnetic fields, and furthermore, it sensibly reacts to the polarization anisotropy of the cavity which represents an artificial magnetic field. Our results are in qualitative and quantitative agreement with our model based on pseudospin rate equations, accounting for both effects of real and pseudo-magnetic fields.
201 - M. Abbarchi , A. Amo , V. G. Sala 2012
A textbook example of quantum mechanical effects is the coupling of two states through a tunnel barrier. In the case of macroscopic quantum states subject to interactions, the tunnel coupling gives rise to Josephson phenomena including Rabi oscillati ons, the a.c. and d.c. effects, or macroscopic self-trapping depending on whether tunnelling or interactions dominate. Non-linear Josephson physics, observed in superfluid helium and atomic condensates, has remained inaccessible in photonic systems due to the required effective photon-photon interactions. We report on the observation of non-linear Josephson oscillations of two coupled polariton condensates confined in a photonic molecule etched in a semiconductor microcavity. By varying both the distance between the micropillars forming the molecule and the condensate density in each micropillar, we control the ratio of coupling to interaction energy. At low densities we observe coherent oscillations of particles tunnelling between the two micropillars. At high densities, interactions quench the transfer of particles inducing the macroscopic self-trapping of the condensate in one of the micropillars. The finite lifetime of polaritons results in a dynamical transition from self-trapping to oscillations with pi phase. Our results open the way to the experimental study of highly non-linear regimes in photonic systems, such as chaos or symmetry-breaking bifurcations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا