ﻻ يوجد ملخص باللغة العربية
Atomically-thin transition metal dichalcogenide crystals (TMDCs) hold great promise for future semiconductor optoelectronics due to their unique electronic and optical properties. In particular, electron-hole pairs (excitons) in TMDCs are stable at room temperature and interact strongly with light. When TMDCs are embedded in an optical microcavity, the excitons can hybridise with cavity photons to form exciton polaritons (polaritons herein), which display both ultrafast velocities and strong interactions. The ability to manipulate and trap polaritons on a microchip is critical for future applications. Here, we create a potential landscape for room-temperature polaritons in monolayer WS$_2$, and demonstrate their free propagation and trapping. We show that the effect of dielectric disorder, which restricts the diffusion of WS$_2$ excitons and broadens their spectral resonance, is dramatically reduced in the strong exciton-photon coupling regime leading to motional narrowing. This enables the ballistic transport of WS$_2$ polaritons across tens of micrometers with an extended range of partial first-order coherence. Moreover, the dephasing of trapped polaritons is dramatically suppressed compared to both WS$_2$ excitons and free polaritons. Our results demonstrate the possibility of long-range transport and efficient trapping of TMDC polaritons in ambient conditions.
Spin-orbit coupling is a fundamental mechanism that connects the spin of a charge carrier with its momentum. Likewise, in the optical domain, a synthetic spin-orbit coupling is accessible, for instance, by engineering optical anisotropies in photonic
Observations of polariton condensation in semiconductor microcavities suggest that polaritons can be exploited as a novel type of laser with low input-power requirements. The low-excitation regime is approximately equivalent to thermal equilibrium, a
The emergence of two-dimensional crystals has revolutionized modern solid-state physics. From a fundamental point of view, the enhancement of charge carrier correlations has sparked enormous research activities in the transport- and quantum optics co
Strong spin-orbit coupling and inversion symmetry breaking in transition metal dichalcogenide monolayers yield the intriguing effects of valley-dependent optical selection rules. As such, it is possible to substantially polarize valley excitons with
A textbook example of quantum mechanical effects is the coupling of two states through a tunnel barrier. In the case of macroscopic quantum states subject to interactions, the tunnel coupling gives rise to Josephson phenomena including Rabi oscillati