ﻻ يوجد ملخص باللغة العربية
The Planetary Camera and Spectrograph (PCS) for the Extremely Large Telescope (ELT) will be dedicated to detecting and characterising nearby exoplanets with sizes from sub-Neptune to Earth-size in the neighbourhood of the Sun. This goal is achieved by a combination of eXtreme Adaptive Optics (XAO), coronagraphy and spectroscopy. PCS will allow us not only to take images, but also to look for biosignatures such as molecular oxygen in the exoplanets atmospheres. This article describes the PCS primary science goals, the instrument concept and the research and development activities that will be carried out over the coming years.
The expected yield of potentially Earth-like planets is a useful metric for designing future exoplanet-imaging missions. Recent yield studies of direct-imaging missions have focused primarily on yield methods and trade studies using toy models of mis
ExoEarth yield is a critical science metric for future exoplanet imaging missions. Here we estimate exoEarth candidate yield using single visit completeness for a variety of mission design and astrophysical parameters. We review the methods used in p
METIS is one of the three first-light instruments planned for the ELT, mainly dedicated to high contrast imaging in the mid-infrared. On the SPHERE high-contrast instrument currently installed at the VLT, we observe that one of the main contrast limi
We survey the present landscape in submillimetre astronomy for Canada and describe a plan for continued engagement in observational facilities to ~2020. Building on Canadas decadal Long Range Plan process, we emphasize that continued involvement in a
So far, 24 Isolated neutron stars (INSs) of different types have been identified at optical wavelengths, from the classical radio pulsars to more peculiar objects, like the magnetars. Most identifications have been obtained in the last 20 years thank