ﻻ يوجد ملخص باللغة العربية
The empirical heat capacities of $^{93-98}$Mo nuclei are re-investigated by using the latest updated and recommended nuclear level density (NLD) data below the neutron binding energy $B_n$ combined with the back-shifted Fermi-gas (BSFG) model for the energy region above $B_n$. For the latter, the BSFG formula with energy-dependent level density parameter is used and the new parameterization has been carried out in order to obtain the best fit to the new NLD data in the whole data range. The results obtained show that the S-shaped heat capacity, a fingerprint of the pairing phase transition, is more pronounced in even $^{94,96,98}$Mo nuclei than that in odd $^{93,95,97}$Mo isotopes. This result is different with those obtained in two previous studies by R. Chankova et al., [Phys. Rev. C {bf 73}, 034311 (2006)] and K. Kaneko et al., [Phys. Rev. C {bf 74}, 024325 (2006)], in which the old NLD data and the BSFG model with energy-independent level density parameter were used. Moreover, the present work suggests that the very strong S-shape observed in the heat capacities of both even and odd Molybdenum isotopes by K. Kaneko et al., [Phys. Rev. C {bf 74}, 024325 (2006)] should be re-investigated. The present work also suggests that obtain the correct heat capacity and associated pairing phase transition in excited nuclei, one should use the correct NLD data and the best fitted BSFG NLD in the entire region where the experimental data are available.
The pairing correlations in hot nuclei $^{162}$Dy are investigated in terms of the thermodynamical properties by covariant density functional theory. The heat capacities $C_V$ are evaluated in the canonical ensemble theory and the paring correlations
An abnormal production of events with almost equal-sized fragments was theoretically proposed as a signature of spinodal instabilities responsible for nuclear multifragmentation in the Fermi energy domain. On the other hand finite size effects are pr
This review article is focused on the tremendous progress realized during the last fifteen years in the understanding of multifragmentation and its relationship to the liquid-gas phase diagram of nuclei and nuclear matter. The explosion of the whole
The $Delta$-scaling method has been applied to the total multiplicity distribution of the relativistic ion collisions of p+p, C+C and Pb+Pb which were simulated by a Monte Carlo package, LUCIAE 3.0. It is found that the $Delta$-scaling parameter decr
Simulations based on experimental data obtained from multifragmenting quasi-fused nuclei produced in central $^{129}$Xe + $^{nat}$Sn collisions have been used to deduce event by event freeze-out properties in the thermal excitation energy range 4-12