ترغب بنشر مسار تعليمي؟ اضغط هنا

Privacy-Aware Load Ensemble Control: A Linearly-Solvable MDP Approach

144   0   0.0 ( 0 )
 نشر من قبل Ali Hassan
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Demand response (DR) programs engage distributed demand-side resources, e.g., controllable residential and commercial loads, in providing ancillary services for electric power systems. Ensembles of these resources can help reducing system load peaks and meeting operational limits by adjusting their electric power consumption. To equip utilities or load aggregators with adequate decision-support tools for ensemble dispatch, we develop a Markov Decision Process (MDP) approach to optimally control load ensembles in a privacy-preserving manner. To this end, the concept of differential privacy is internalized into the MDP routine to protect transition probabilities and, thus, privacy of DR participants. The proposed approach also provides a trade-off between solution optimality and privacy guarantees, and is analyzed using real-world data from DR events in the New York University microgrid in New York, NY.



قيم البحث

اقرأ أيضاً

Stream applications are widely deployed on the cloud. While modern distributed streaming systems like Flink and Spark Streaming can schedule and execute them efficiently, streaming dataflows are often dynamically changing, which may cause computation imbalance and backpressure. We introduce AutoFlow, an automatic, hotspot-aware dynamic load balance system for streaming dataflows. It incorporates a centralized scheduler which monitors the load balance in the entire dataflow dynamically and implements state migrations correspondingly. The scheduler achieves these two tasks using a simple asynchronous distributed control message mechanism and a hotspot-diminishing algorithm. The timing mechanism supports implicit barriers and a highly efficient state-migration without global barriers or pauses to operators. It also supports a time-window based load-balance measurement and feeds them to the hotspot-diminishing algorithm without user interference. We implemented AutoFlow on top of Ray, an actor-based distributed execution framework. Our evaluation based on various streaming benchmark dataset shows that AutoFlow achieves good load-balance and incurs a low latency overhead in highly data-skew workload.
Security is one of the biggest concern in power system operation. Recently, the emerging cyber security threats to operational functions of power systems arouse high public attention, and cybersecurity vulnerability thus become an emerging topic to e valuate compromised operational performance under cyber attack. In this paper, vulnerability of cyber security of load frequency control (LFC) system, which is the key component in energy manage system (EMS), is assessed by exploiting the system response to attacks on LFC variables/parameters. Two types of attacks: 1) injection attack and 2) scale attack are considered for evaluation. Two evaluation criteria reflecting the damage on system stability and power generation are used to quantify system loss under cyber attacks. Through a sensitivity-based method and attack tree models, the vulnerability of different LFC components is ranked. In addition, a post-intrusion cyber attack detection scheme is proposed. Classification-based schemes using typical classification algorithms are studied and compared to identify different attack scenarios.
When providing bulk power system services, a third-party aggregator could inadvertently cause operational issues at the distribution level. We propose a coordination architecture in which an aggregator and distribution operator coordinate to avoid di stribution network constraint violations, while preserving private information. The aggregator controls thermostatic loads to provide frequency regulation, while the distribution operator overrides the aggregators control actions when necessary to ensure safe network operation. Using this architecture, we propose two control strategies, which differ in terms of measurement and communication requirements, as well as model complexity and scalability. The first uses an aggregate model and blocking controller, while the second uses individual load models and a mode-count controller. Both outperform a benchmark strategy in terms of tracking accuracy. Furthermore, the second strategy performs better than the first, with only 0.10% average RMS error (compared to 0.70%). The second is also able to maintain safe operation of the distribution network while overriding less than 1% of the aggregators control actions (compared to approximately 15% by the first strategy). However, the second strategy has significantly more measurement, communication, and computational requirements, and therefore would be more complex and expensive to implement than the first strategy.
An important issue in todays electricity markets is the management of flexibilities offered by new practices, such as smart home appliances or electric vehicles. By inducing changes in the behavior of residential electric utilities, demand response ( DR) seeks to adjust the demand of power to the supply for increased grid stability and better integration of renewable energies. A key role in DR is played by emergent independent entities called load aggregators (LAs). We develop a new decentralized algorithm to solve a convex relaxation of the classical Alternative Current Optimal Power Flow (ACOPF) problem, which relies on local information only. Each computational step can be performed in an entirely privacy-preserving manner, and system-wide coordination is achieved via node-specific distribution locational marginal prices (DLMPs). We demonstrate the efficiency of our approach on a 15-bus radial distribution network.
Thermostatically controlled loads such as refrigerators are exceptionally suitable as a flexible demand resource. This paper derives a decentralised load control algorithm for refrigerators. It is adapted from an existing continuous time control appr oach, with the aim to achieve low computational complexity and an ability to handle discrete time steps of variable length -- desirable features for embedding in appliances and high-throughput simulations. Simulation results of large populations of heterogeneous appliances illustrate the accurate aggregate control of power consumption and high computational efficiency. Tracking accuracy is quantified as a function of population size and time step size, and correlations in the tracking error are investigated. The controller is shown to be robust to errors in model specification and to sudden perturbations in the form of random refrigerator door openings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا