ﻻ يوجد ملخص باللغة العربية
A novel multifunctional nanodevice based in doxorubicin (DOX)- loaded mesoporous silica nanoparticles (MSNs) as nanoplatforms for the assembly of different building blocks has been developed for bone cancer treatment. These building blocks consists of: i) a polyacrylic acid (PAA) capping layer grafted to MSNs via an acid-cleavable acetal linker, to minimize premature cargo release and provide the nanosystem of pHresponsive drug delivery ability; and ii) a targeting ligand, the plant lectin concanavalin A (ConA), able to selectively recognize, bind and internalize owing to certain cell-surface glycans, such as sialic acids (SA), overexpressed in given tumor cells. This multifunctional nanosystem exhibits a noticeable higher internalization degree into human osteosarcoma cells (HOS), overexpressing SA, compared to healthy preosteoblast cells (MC3T3-E1). Moreover, the results indicate that small DOX loading leads to almost 100% of osteosarcoma cell death in comparison with healthy bone cells, which significantly preserve their viability. Besides, this nanodevice has a cytotoxicity on tumor cells 8- fold higher than that caused by the free drug. These findings demonstrate that the synergistic combination of different building blocks into a unique nanoplatform increases antitumor effectiveness and decreases toxicity towards normal cells. This line of attack opens up new insights in targeted bone cancer therapy.
Aminopropyl modified mesoporous SiO2 nanoparticles, MCM-41 type, have been synthesized by the co-condensation method from tetraethylorthosilicate (TEOS) and aminopropyltriethoxysilane (APTES). By means of modifying TEOS/APTES ratio we have carried ou
Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the po
Macroporous scaffolds made of a SiO2-CaO-P2O5 mesoporous bioactive glass (MBG) and epolycaprolactone (PCL) have been prepared by robocasting. These scaffolds showed an excellent in vitro biocompatibility in contact with osteoblast like cells (Saos 2)
Until recently many studies of bone remodeling at the cellular level have focused on the behavior of mature osteoblasts and osteoclasts, and their respective precursor cells, with the role of osteocytes and bone lining cells left largely unexplored.
A very small number of biomaterials investigated for bone regeneration was reported as able to prevent the oxidative stress. In this study beads based on alginate hydrogel and mesoporous glasses (MG) containing different amounts of cerium oxides (Ce3