ﻻ يوجد ملخص باللغة العربية
We present high-sensitivity, wide-band observations (704 to 4032 MHz) of the young to middle-aged radio pulsar J1452-6036, taken at multiple epochs before and, serendipitously, shortly after a glitch occurred on 2019 April 27. We obtained the data using the new ultra-wide-bandwidth low-frequency (UWL) receiver at the Parkes radio telescope, and we used Markov Chain Monte Carlo techniques to estimate the glitch parameters robustly. The data from our third observing session began 3 h after the best-fitting glitch epoch, which we constrained to within 4 min. The glitch was of intermediate size, with a fractional change in spin frequency of $270.52(3) times 10^{-9}$. We measured no significant change in spin-down rate and found no evidence for rapidly-decaying glitch components. We systematically investigated whether the glitch affected any radiative parameters of the pulsar and found that its spectral index, spectral shape, polarisation fractions, and rotation measure stayed constant within the uncertainties across the glitch epoch. However, its pulse-averaged flux density increased significantly by about 10 per cent in the post-glitch epoch and decayed slightly before our fourth observation a day later. We show that the increase was unlikely caused by calibration issues. While we cannot exclude that it was due to refractive interstellar scintillation, it is hard to reconcile with refractive effects. The chance coincidence probability of the flux density increase and the glitch event is low. Finally, we present the evolution of the pulsars pulse profile across the band. The morphology of its polarimetric pulse profile stayed unaffected to a precision of better than 2 per cent.
Seven years of pulse time-of-arrival measurements have been collected from observations of the young pulsar PSR B2334+61 using the Nanshan radio telescope of Urumqi Observatory. A phase-connected solution has been obtained over the whole data span, 2
We report the first detection of a glitch in the radio pulsar PSR J0908$-$4913 (PSR B0906$-$49) during regular timing observations by the Molonglo Observatory Synthesis Telescope (MOST) as part of the UTMOST project.
One large glitch was detected in PSR B1737$-$30 using data spanning from MJD 57999 to 58406 obtained with the newly built Shanghai Tian Ma Radio Telescope (TMRT). The glitch took place at the time around MJD 58232.4 when the pulsar underwent an incre
The sudden spin-down in the rotation of magnetar 1E 2259+586 observed by Archibald et al. (2013) was a rare event. However this particular event, referred to as an anti-glitch, was followed by another event which Archibald et al. (2013) suggested cou
Propagation effects in the interstellar medium and intrinsic profile changes can cause variability in the timing of pulsars, which limits the accuracy of fundamental science done via pulsar timing. One of the best timing pulsars, PSR J1713+0747, has