ترغب بنشر مسار تعليمي؟ اضغط هنا

Hierarchical tensile structures with ultralow mechanical dissipation

299   0   0.0 ( 0 )
 نشر من قبل Alberto Beccari
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Structural hierarchy is found in myriad biological systems and has improved man-made structures ranging from the Eiffel tower to optical cavities. Hierarchical metamaterials utilize structure at multiple size scales to realize new and highly desirable properties which can be strikingly different from those of the constituent materials. In mechanical resonators whose rigidity is provided by static tension, structural hierarchy can reduce the dissipation of the fundamental mode to ultralow levels due to an unconventional form of soft clamping. Here, we apply hierarchical design to silicon nitride nanomechanical resonators and realize binary tree-shaped resonators with quality factors as high as $10^9$ at 107 kHz frequency, reaching the parameter regime of levitated particles. The resonators thermal-noise-limited force sensitivities reach $740 mathrm{zN/sqrt{Hz}}$ at room temperature and $mathrm{90 zN/sqrt{Hz}}$ at 6 K, surpassing state-of-the-art cantilevers currently used for force microscopy. We also find that the self-similar structure of binary tree resonators results in fractional spectral dimensions, which is characteristic of fractal geometries. Moreover, we show that the hierarchical design principles can be extended to 2D trampoline membranes, and we fabricate ultralow dissipation membranes suitable for interferometric position measurements in Fabry-Perot cavities. Hierarchical nanomechanical resonators open new avenues in force sensing, signal transduction and quantum optomechanics, where low dissipation is paramount and operation with the fundamental mode is often advantageous.

قيم البحث

اقرأ أيضاً

In strained mechanical resonators, the concurrence of tensile stress and geometric nonlinearity dramatically reduces dissipation. This phenomenon, dissipation dilution, is employed in mirror suspensions of gravitational wave interferometers and at th e nanoscale, where soft-clamping and strain engineering have allowed extremely high quality factors. However, these techniques have so far only been applied in amorphous materials, specifically silicon nitride. Crystalline materials exhibit significantly lower intrinsic damping at cryogenic temperatures, due to the absence of two level systems in the bulk, as exploited in Weber bars and silicon optomechanical cavities. Applying dissipation dilution engineering to strained crystalline materials could therefore enable extremely low loss nanomechanical resonators, due to the combination of reduced internal friction, high intrinsic strain, and high yield strength. Pioneering work has not yet fully exploited this potential. Here, we demonstrate that single crystal strained silicon, a material developed for high mobility transistors, can be used to realize mechanical resonators with ultralow dissipation. We observe that high aspect ratio ($>10^5$) strained silicon nanostrings support MHz mechanical modes with quality factors exceeding $10^{10}$ at 7 K, a tenfold improvement over values reported in silicon nitride. At 7 K, the thermal noise-limited force sensitivity is approximately $45 mathrm{{zN}/{sqrt{Hz}}}$ - approaching that of carbon nanotubes - and the heating rate is only 60 quanta-per-second. Our nanomechanical resonators exhibit lower dissipation than the most pristine macroscopic oscillators and their low mass makes them particularly promising for quantum sensing and transduction.
68 - S. Yanai , V. Singh , M. Yuan 2016
We experimentally investigate dissipation in mechanical resonators made of a disordered superconducting thin film of Molybdenum-Rhenium(MoRe) alloy. By electrostatically driving the drum with a resonant AC voltage, we detect its motion using a superc onducting microwave cavity. From the temperature dependence of mechanical resonance frequencies and quality factors, we find evidence for non-resonant, mechanically active two-level systems (TLSs) limiting its quality factor at low temperature. In addition, we observe a strong suppression of mechanical dissipation at large mechanical driving amplitudes, suggesting an unconventional saturation of the non-resonant TLSs. These new observations shed light on the mechanism of mechanical damping in superconducting drums and routes towards understanding dissipation in such mechanical systems.
We review a new implementation of Kelvin probe force microscopy (KPFM) in which the dissipation signal of frequency modulation atomic force microscopy (FM-AFM) is used for dc bias voltage feedback (D-KPFM). The dissipation arises from an oscillating electrostatic force that is coherent with the tip oscillation, which is caused by applying the ac voltage between the tip and sample. The magnitude of the externally induced dissipation is found to be proportional to the effective dc bias voltage, which is the difference between the applied dc voltage and the contact potential difference. Two different implementations of D-KPFM are presented. In the first implementation, the frequency of the applied ac voltage, $f_mathrm{el}$, is chosen to be the same as the tip oscillation ($f_mathrm{el} = f_mathrm{m}$: $1omega$D-KPFM). In the second one, the ac voltage frequency, $f_mathrm{el}$, is chosen to be twice the tip oscillation frequency ($f_mathrm{el}= 2 f_mathrm{m}$: $2omega$D-KPFM). In $1omega$D-KPFM, the dissipation is proportional to the electrostatic force, which enables the use of a small ac voltage amplitude even down to $approx 10$,mV. In $2omega$D-KPFM, the dissipation is proportional to the electrostatic force gradient, which results in the same potential contrast as that obtained by FM-KPFM. D-KPFM features a simple implementation with no lock-in amplifier and faster scanning as it requires no low frequency modulation. The use of a small ac voltage amplitude in $1omega$D-KPFM is of great importance in characterizing of technically relevant materials in which their electrical properties can be disturbed by the applied electric field. $2omega$D-KPFM is useful when more accurate potential measurement is required. The operations in $1omega$ and $2omega$D-KPFM can be switched easily to take advantage of both features at the same location on a sample.
111 - Yingchun Leng , Rui Li , Xi Kong 2020
Ultralow dissipation plays an important role in sensing applications and exploring macroscopic quantum phenomena using micro-and nano-mechanical systems. We report a diamagnetic-levitated micro-mechanical oscillator operating at a low temperature of 3K with measured dissipation as low as 0.59 $mu$Hz and a quality factor as high as $2 times 10^7$. To the best of our knowledge the achieved dissipation is the lowest in micro- and nano-mechanical systems to date, orders of magnitude improvement over the reported state-of-the-art systems based on different principles. The cryogenic diamagnetic-levitated oscillator described here is applicable to a wide range of mass, making it a good candidate for measuring both force and acceleration with ultra-high sensitivity. By virtue of the naturally existing strong magnetic gradient, this system has great potential in quantum spin mechanics study.
74 - M. Will , M. Hamer , M. Muller 2018
Ultralight mechanical resonators based on low-dimensional materials are well suited as exceptional transducers of minuscule forces or mass changes. However, the low dimensionality also provides a challenge to minimize resistive losses and heating. He re, we report on a novel approach that aims to combine different 2D materials to tackle this challenge. We fabricated a heterostructure mechanical resonator consisting of few layers of niobium diselenide (NbSe$_2$) encapsulated by two graphene sheets. The hybrid membrane shows high quality factors up to 245000 at low temperatures, comparable to the best few-layer graphene mechanical resonators. In contrast to few-layer graphene resonators, the device shows reduced electrical losses attributed to the lower resistivity of the NbSe$_2$ layer. The peculiar low temperature dependence of the intrinsic quality factor points to dissipation over two-level systems which in turn relax over the electronic system. Our high sensitivity readout is enabled by coupling the membrane to a superconducting cavity which allows for the integration of the hybrid mechanical resonator as a sensitive and low loss transducer in future quantum circuits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا