ﻻ يوجد ملخص باللغة العربية
The emergence of ferromagnetism in two-dimensional van der Waals materials has aroused broad interest. However, the ferromagnetic instability has been a problem remained. In this work, by using the first-principles calculations, we identified the critical ranges of strain and doping for the bilayer Cr2Ge2Te6 within which the ferromagnetic stability can be enhanced. Beyond the critical range, the tensile strain can induce the phase transition from the ferromagnetic to the antiferromagnetic, and the direction of magnetic easy axis can be converted from out-of-plane to in-plane due to the increase of compressive strain, or electrostatic doping. We also predicted an electron doping range, within which the ferromagnetism can be enhanced, while the ferromagnetic stability was maintained. Moreover, we found that the compressive strain can reverse the spin polarization of electrons at the conduction band minimum, so that two categories of half-metal can be induced by controlling electrostatic doping in the bilayer Cr2Ge2Te6. These results should shed a light on achieving ferromagnetic stability for low-dimensional materials.
Cr2Ge2Te6 is an intrinsic ferromagnetic semiconductor with van der Waals type layered structure, thus represents a promising material for novel electronic and spintronic devices. Here we combine scanning tunneling microscopy and first-principles calc
Cr2Ge2Te6 (CGT), a layered ferromagnetic insulator, has attracted a great deal of interest recently owing to its potential for integration with Dirac materials to realize the quantum anomalous Hall effect (QAHE) and to develop novel spintronics devic
We report on the spectroscopic observation of a quantized electronic fine structure near the Fermi energy in thin Fe films grown on W(110). The quantum well states are detected down to binding energies of $sim$10 meV by angle-resolved photoelectron s
We report the anisotropic changes in the electronic structure of a Kondo semiconductor CeOs$_2$Al$_{10}$ across an anomalous antiferromagnetic ordering temperature ($T_0$) of 29 K, using optical conductivity spectra. The spectra along the $a$- and $c
We carefully investigated the ferromagnetic coupling in the as-grown and annealed ferromagnetic semiconductor GaMnAs/AlGaMnAs bilayer devices. We observed that the magnetic interaction between the two layers strongly affects the magnetoresistance of