ﻻ يوجد ملخص باللغة العربية
We have demonstrated a novel type of superconducting transmon qubit in which a Josephson junction has been engineered to act as its own parallel shunt capacitor. This merged-element transmon (MET) potentially offers a smaller footprint and simpler fabrication than conventional transmons. Because it concentrates the electromagnetic energy inside the junction, it reduces relative electric field participation from other interfaces. By combining micrometer-scale Al/AlOx/Al junctions with long oxidations and novel processing, we have produced functional devices with $E_{J}$/$E_{C}$ in the low transmon regime ($E_{J}$/$E_{C}$ $lesssim$30). Cryogenic I-V measurements show sharp dI/dV structure with low sub-gap conduction. Qubit spectroscopy of tunab
A merged-element transmon (MET) device, based on Si fins, is proposed and the steps to form such a FinMET are demonstrated. This new application of fin technology capitalizes on the anisotropic etch of Si(111) relative to Si(110) to define atomically
We provide a characterization and analysis of the effects of dissipation on oscillator assisted (qubus) quantum gates. The effects can be understood and minimized by looking at the dynamics of the signal coherence and its entanglement with the contin
Rigidity of an ordered phase in condensed matter results in collective excitation modes spatially extending in macroscopic dimensions. Magnon is a quantum of an elementary excitation in the ordered spin system, such as ferromagnet. Being low dissipat
Quantum computation requires the precise control of the evolution of a quantum system, typically through application of discrete quantum logic gates on a set of qubits. Here, we use the cross-resonance interaction to implement a gate between two supe
The current-mirror circuit [A. Kitaev, arXiv:cond-mat/0609441 (2006)] exhibits a robust ground-state degeneracy and wave functions with disjoint support for appropriate circuit parameters. In this protected regime, Cooper-pair excitons form the relev