ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-term regulation of prolonged epidemic outbreaks in large populations via adaptive control: a singular perturbation approach

47   0   0.0 ( 0 )
 نشر من قبل M. Ali Al-Radhawi
 تاريخ النشر 2021
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Initial hopes of quickly eradicating the COVID-19 pandemic proved futile, and the goal shifted to controlling the peak of the infection, so as to minimize the load on healthcare systems. To that end, public health authorities intervened aggressively to institute social distancing, lock-down policies, and other Non-Pharmaceutical Interventions (NPIs). Given the high social, educational, psychological, and economic costs of NPIs, authorities tune them, alternatively tightening up or relaxing rules, with the result that, in effect, a relatively flat infection rate results. For example, during the summer in parts of the United States, daily infection numbers dropped to a plateau. This paper approaches NPI tuning as a control-theoretic problem, starting from a simple dynamic model for social distancing based on the classical SIR epidemics model. Using a singular-perturbation approach, the plateau becomes a Quasi-Steady-State (QSS) of a reduced two-dimensional SIR model regulated by adaptive dynamic feedback. It is shown that the QSS can be assigned and it is globally asymptotically stable. Interestingly, the dynamic model for social distancing can be interpreted as a nonlinear integral controller. Problems of data fitting and parameter identifiability are also studied for this model. The paper also discusses how this simple model allows for meaningful study of the effect of population size, vaccinations, and the emergence of second waves.



قيم البحث

اقرأ أيضاً

Assessing and managing the impact of large-scale epidemics considering only the individual risk and severity of the disease is exceedingly difficult and could be extremely expensive. Economic consequences, infrastructure and service disruption, as we ll as the recovery speed, are just a few of the many dimensions along which to quantify the effect of an epidemic on societys fabric. Here, we extend the concept of resilience to characterize epidemics in structured populations, by defining the system-wide critical functionality that combines an individuals risk of getting the disease (disease attack rate) and the disruption to the systems functionality (human mobility deterioration). By studying both conceptual and data-driven models, we show that the integrated consideration of individual risks and societal disruptions under resilience assessment framework provides an insightful picture of how an epidemic might impact society. In particular, containment interventions intended for a straightforward reduction of the risk may have net negative impact on the system by slowing down the recovery of basic societal functions. The presented study operationalizes the resilience framework, providing a more nuanced and comprehensive approach for optimizing containment schemes and mitigation policies in the case of epidemic outbreaks.
We study the effect of the connectivity pattern of complex networks on the propagation dynamics of epidemics. The growth time scale of outbreaks is inversely proportional to the network degree fluctuations, signaling that epidemics spread almost inst antaneously in networks with scale-free degree distributions. This feature is associated with an epidemic propagation that follows a precise hierarchical dynamics. Once the highly connected hubs are reached, the infection pervades the network in a progressive cascade across smaller degree classes. The present results are relevant for the development of adaptive containment strategies.
Recently the A/H1N1-2009 virus pandemic appeared in Mexico and in other nations. We present a study of this pandemic in the Mexican case using the SIR model to describe epidemics. This model is one of the simplest models but it has been a successful description of some epidemics of closed populations. We consider the data for the Mexican case and use the SIR model to make some predictions. Then, we generalize the SIR model in order to describe the spatial dynamics of the disease. We make a study of the spatial and temporal spread of the infected population with model parameters that are consistent with temporal SIR model parameters obtained by fitting to the Mexican case.
Resistance to insecticide is considered nowadays one of the major threats to insect control, as its occurrence reduces drastically the efficiency of chemical control campaigns, and may also perturb the application of other control methods, like biolo gical and genetic control. In order to account for the emergence and spread of such phenomenon as an effect of exposition to larvicide and/or adulticide, we develop in this paper a general time-continuous population model with two life phases, subsequently simplified through slow manifold theory. The derived models present density-dependent recruitment and mortality rates in a non-conventional way. We show that in absence of selection, they evolve in compliance with Hardy-Weinberg law; while in presence of selection and in the dominant or codominant cases, convergence to the fittest genotype occurs. The proposed mathematical models should allow for the study of several issues of importance related to the use of insecticides and other adaptive phenomena.
We propose and study a new mathematical model of the human immunodeficiency virus (HIV). The main novelty is to consider that the antibody growth depends not only on the virus and on the antibodies concentration but also on the uninfected cells conce ntration. The model consists of five nonlinear differential equations describing the evolution of the uninfected cells, the infected ones, the free viruses, and the adaptive immunity. The adaptive immune response is represented by the cytotoxic T-lymphocytes (CTL) cells and the antibodies with the growth function supposed to be trilinear. The model includes two kinds of treatments. The objective of the first one is to reduce the number of infected cells, while the aim of the second is to block free viruses. Firstly, the positivity and the boundedness of solutions are established. After that, the local stability of the disease free steady state and the infection steady states are characterized. Next, an optimal control problem is posed and investigated. Finally, numerical simulations are performed in order to show the behavior of solutions and the effectiveness of the two incorporated treatments via an efficient optimal control strategy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا