ﻻ يوجد ملخص باللغة العربية
As a generalization and extension of our previous paper {it J. Phys. A: Math. Theor. 53 055302} cite{AME2020}, in this work we study a quantum 4-body system in $mathbb{R}^d$ ($dgeq 3$) with quadratic and sextic pairwise potentials in the {it relative distances}, $r_{ij} equiv {|{bf r}_i - {bf r}_j |}$, between particles. Our study is restricted to solutions in the space of relative motion with zero total angular momentum ($S$-states). In variables $rho_{ij} equiv r_{ij}^2$, the corresponding reduced Hamiltonian of the system possesses a hidden $sl(7;{bf R})$ Lie algebra structure. In the $rho$-representation it is shown that the 4-body harmonic oscillator with arbitrary masses and unequal spring constants is exactly-solvable (ES). We pay special attention to the case of four equal masses and to atomic-like (where one mass is infinite, three others are equal), molecular two-center (two masses are infinite, two others are equal) and molecular three-center (three infinite masses) cases. In particular, exact results in the molecular case are compared with those obtained within the Born-Oppenheimer approximation. The first and second order symmetries of non-interacting system are searched. Also, the reduction to the lower dimensional cases $d=1,2$ is discussed. It is shown that for four body harmonic oscillator case there exists an infinite family of eigenfunctions which depend on the single variable which is the moment-of-inertia of the system.
Due to its great importance for applications, we generalize and extend the approach of our previous papers to study aspects of the quantum and classical dynamics of a $4$-body system with equal masses in {it $d$}-dimensional space with interaction de
As a straightforward generalization and extension of our previous paper, J. Phys. A50 (2017) 215201 we study aspects of the quantum and classical dynamics of a $3$-body system with equal masses, each body with $d$ degrees of freedom, with interaction
We show the existence of Lorentz invariant Berry phases generated, in the Stueckleberg-Horwitz-Piron manifestly covariant quantum theory (SHP), by a perturbed four dimensional harmonic oscillator. These phases are associated with a fractional perturb
It is shown that the Confluent Heun Equation (CHEq) reduces for certain conditions of the parameters to a particular class of Quasi-Exactly Solvable models, associated with the Lie algebra $sl (2,{mathbb R})$. As a consequence it is possible to find
The isotropic harmonic oscillator in dimension 3 separates in several different coordinate systems. Separating in a particular coordinate system defines a system of three commuting operators, one of which is the Hamiltonian. We show that the joint sp