ﻻ يوجد ملخص باللغة العربية
We present a one-dimensional model which gives a novel physical interpretation to the specific state of an ensemble of electrons continuously injected into an electrostatic potential well immersed in a strong applied magnetic field preventing radial expansion. When the space-charge field of the electrons accumulated in the potential well compensates the external electrostatic field, a force-free steady-state of the electron cloud forms. This state of equilibrium is known in another context as a squeezed state of an electron beam. It is shown that the spatial distribution of the electron number density in this steady-state correlates with the shape of the potential well. Perturbations of the steady-state propagate along the electron cloud in the form of Trivelpiece-Gould modes.
Recently a filamentation instability was observed when a laser-generated pair cloud interacted with an ambient plasma. The magnetic field it drove was strong enough to magnetize and accelerate the ambient electrons. It is of interest to determine if
We demonstrate magnetic confinement of an ultracold neutral plasma (UCNP) created at the null of a biconic cusp, or quadrupole magnetic field. Initially, the UCNP expands due to electron thermal pressure. As the plasma encounters stronger fields, exp
Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (eOCP) is constructed from the short-ran
The Yukawa one-component plasma (OCP) is a paradigm model for describing plasmas that contain one component of interest and one or more other components that can be treated as a neutralizing, screening background. In appropriately scaled units, inter
We report on the laser-driven generation of purely neutral, relativistic electron-positron pair plasmas. The overall charge neutrality, high average Lorentz factor ($gamma_{e/p} approx 15$), small divergence ($theta_{e/p} approx 10 - 20$ mrad), and h