ﻻ يوجد ملخص باللغة العربية
While the anomalous Hall effect can manifest even without an external magnetic field, time reversal symmetry is nonetheless still broken by the internal magnetization of the sample. Recently, it has been shown that certain materials without an inversion center allow for a nonlinear type of anomalous Hall effect whilst retaining time reversal symmetry. The effect may arise from either Berry curvature or through various asymmetric scattering mechanisms. Here, we report the observation of an extremely large $c$-axis nonlinear anomalous Hall effect in the non-centrosymmetric T$_d$ phase of MoTe$_2$ and WTe$_2$ without intrinsic magnetic order. We find that the effect is dominated by skew-scattering at higher temperatures combined with another scattering process active at low temperatures. Application of higher bias yields an extremely large Hall ratio of $E_perp /E_parallel$=2.47 and corresponding anomalous Hall conductivity of order 8x10$^7$S/m.
A finite Berry curvature dipole can induce a nonlinear Hall effect in which a charge current induces a second harmonic transverse electric voltage under time-reversal-symmetric condition. Here, we report the transport measurement of giant nonlinear H
Moire heterobilayer transition metal dichalcogenides (TMDs) emerge as an ideal system for simulating the single-band Hubbard model and interesting correlated phases have been observed in these systems. Nevertheless, the moire bands in heterobilayer T
Unlike the conventional (linear) anomalous Nernst effect, the non-linear anomalous Nernst effect (NLANE) can survive in an inversion symmetry broken system even in the presence of time-reversal symmetry. Using semiclassical Boltzmann transport theory
The discovery of the anomalous Hall effect (AHE) in bulk metallic antiferromagnets (AFMs) motivates the search of the same phenomenon in two-dimensional (2D) systems, where a quantized anomalous Hall conductance can in principle be observed. Here, we
The carrier dynamics and electronic structures of type-II Weyl semimetal candidates MoTe$_2$ and WTe$_2$ have been investigated by using temperature-dependent optical conductivity [$sigma(omega)$] spectra. Two kinds of Drude peaks (narrow and broad)