ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant $c$-axis nonlinear anomalous Hall effect in T$_d$-MoTe$_2$ and WTe$_2$

61   0   0.0 ( 0 )
 نشر من قبل Shazhou Zhong
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While the anomalous Hall effect can manifest even without an external magnetic field, time reversal symmetry is nonetheless still broken by the internal magnetization of the sample. Recently, it has been shown that certain materials without an inversion center allow for a nonlinear type of anomalous Hall effect whilst retaining time reversal symmetry. The effect may arise from either Berry curvature or through various asymmetric scattering mechanisms. Here, we report the observation of an extremely large $c$-axis nonlinear anomalous Hall effect in the non-centrosymmetric T$_d$ phase of MoTe$_2$ and WTe$_2$ without intrinsic magnetic order. We find that the effect is dominated by skew-scattering at higher temperatures combined with another scattering process active at low temperatures. Application of higher bias yields an extremely large Hall ratio of $E_perp /E_parallel$=2.47 and corresponding anomalous Hall conductivity of order 8x10$^7$S/m.

قيم البحث

اقرأ أيضاً

A finite Berry curvature dipole can induce a nonlinear Hall effect in which a charge current induces a second harmonic transverse electric voltage under time-reversal-symmetric condition. Here, we report the transport measurement of giant nonlinear H all effect in twisted WSe$_2$ homobilayers as evidenced by the dominated second harmonic Hall voltage that scales quadratically with the injection current. Benefited from strain-induced symmetry breaking, the nonlinear Hall effects are measurable globally along all in-plane directions. At the half-filling of the hole moire superlattice band in twisted WSe$_2$ where interaction effects are strong, we observe a record high nonlinear Hall responsivity of 10$^{10}$ V W$^{-1}$. Our work demonstrates a new and highly tunable correlated system to achieve nonlinear Hall effect and provides potential device applications using artificially constructed van der Waals superlattices.
Moire heterobilayer transition metal dichalcogenides (TMDs) emerge as an ideal system for simulating the single-band Hubbard model and interesting correlated phases have been observed in these systems. Nevertheless, the moire bands in heterobilayer T MDs were believed to be topologically trivial. Recently, it was reported that both a quantum valley Hall insulating state at filling $ u=2$ (two holes per moire unit cell) and a valley polarized quantum anomalous Hall state at filling $ u=1$ were observed in AB stacked moire MoTe$_2$/WSe$_2$ heterobilayers. However, how the topologically nontrivial states emerge is not known. In this work, we propose that the pseudo-magnetic fields induced by lattice relaxation in moire MoTe$_2$/WSe$_2$ heterobilayers could naturally give rise to moire bands with finite Chern numbers. We show that a time-reversal invariant quantum valley Hall insulator is formed at full-filing $ u=2$, when two moire bands with opposite Chern numbers are filled. At half-filling $ u=1$, Coulomb interaction lifts the valley degeneracy and results in a valley polarized quantum anomalous Hall state, as observed in the experiment. Our theory identifies a new way to achieve topologically non-trivial states in heterobilayer TMD materials.
Unlike the conventional (linear) anomalous Nernst effect, the non-linear anomalous Nernst effect (NLANE) can survive in an inversion symmetry broken system even in the presence of time-reversal symmetry. Using semiclassical Boltzmann transport theory , we derive the general expression of the non-linear anomalous Nernst coefficient as the second-order response function to the applied temperature gradient. We find that the non-linear Nernst current, which flows perpendicular to the temperature gradient even in the absence of a magnetic field, arises due to the Berry curvature of the states near the Fermi surface, and thus is associated with purely a Fermi surface contribution. We apply these results to bilayer WTe$_2$, which is an inversion broken but time reversal symmetric type-II Weyl semimetal supporting chiral Weyl fermions. By tuning the spin-orbit coupling, we show that the sign of the NLANE can change in this system. Together with the angular dependence, we calculate the temperature and chemical potential dependencies of NLANE in bilayer WTe$_2$, and predict specific experimental signatures that can be checked in experiments.
The discovery of the anomalous Hall effect (AHE) in bulk metallic antiferromagnets (AFMs) motivates the search of the same phenomenon in two-dimensional (2D) systems, where a quantized anomalous Hall conductance can in principle be observed. Here, we present experiments on micro-fabricated devices based on Co$_{1/3}$NbS$_2$, a layered AFM that was recently found to exhibit AHE in bulk crystals below the Neel temperature T$_N$ = 29 K. Transport measurements reveal a pronounced resistivity anisotropy, indicating that upon lowering temperature the electronic coupling between individual atomic layers is increasingly suppressed. The experiments also show an extremely large anomalous Hall conductivity of approximately 400 S/cm, more than one order of magnitude larger than in the bulk, which demonstrates the importance of studying the AHE in small exfoliated crystals, less affected by crystalline defects. Interestingly, the corresponding anomalous Hall conductance, when normalized to the number of contributing atomic planes, is $sim , 0.6 ; e^2/h$ per layer, approaching the value expected for the quantized anomalous Hall effect. The observed strong anisotropy of transport and the very large anomalous Hall conductance per layer make the properties of Co$_{1/3}$NbS$_2$ compatible with the presence of partially filled topologically non-trivial 2D bands originating from the magnetic superstructure of the antiferromagnetic state. Isolating atomically thin layers of this material and controlling their charge density may therefore provide a viable route to reveal the occurrence of the quantized AHE in a 2D AFM.
74 - S. Kimura , Y. Nakajima , Z. Mita 2019
The carrier dynamics and electronic structures of type-II Weyl semimetal candidates MoTe$_2$ and WTe$_2$ have been investigated by using temperature-dependent optical conductivity [$sigma(omega)$] spectra. Two kinds of Drude peaks (narrow and broad) have been separately observed. The width of the broad Drude peak increases with elevating temperature above the Debye temperature of about 130 K in the same way as those of normal metals, on the other hand, the narrow Drude peak becomes visible below 80 K and the width is rapidly suppressed with decreasing temperature. Because the temperature dependence of the narrow Drude peak is similar to that of a type-I Weyl semimetal TaAs, it was concluded to originate from Dirac carriers of Weyl bands. The result suggests that the conductance has the contribution of two kinds of carriers, normal semimetallic and Dirac carriers, and this observation is an evidence of type-II Weyl semimetals of MoTe$_2$ and WTe$_2$. The obtained $sigma(omega)$ spectra in the interband transition region can be explained by band structure calculations with a band renormalization owing to electron correlation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا