ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetoelastic Gilbert damping in magnetostrictive Fe$_{0.7}$Ga$_{0.3}$ thin films

436   0   0.0 ( 0 )
 نشر من قبل William Peria
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف William K. Peria




اسأل ChatGPT حول البحث

We report an enhanced magnetoelastic contribution to the Gilbert damping in highly magnetostrictive Fe$_{0.7}$Ga$_{0.3}$ thin films. This effect is mitigated for perpendicular-to-plane fields, leading to a large anisotropy of the Gilbert damping in all of the films (up to a factor of 10 at room temperature). These claims are supported by broadband measurements of the ferromagnetic resonance linewidths over a range of temperatures (5 to 400 K), which serve to elucidate the effect of both the magnetostriction and phonon relaxation on the magnetoelastic Gilbert damping.


قيم البحث

اقرأ أيضاً

91 - Qing Qin , Shikun He , Haijun Wu 2018
The viscous Gilbert damping parameter governing magnetization dynamics is of primary importance for various spintronics applications. Although, the damping constant is believed to be anisotropic by theories. It is commonly treated as a scalar due to lack of experimental evidence. Here, we present an elaborate angle dependent broadband ferromagnetic resonance study of high quality epitaxial La$_{0.7}$Sr$_{0.3}$MnO$_{3}$ films. Extrinsic effects are suppressed and we show convincing evidence of anisotropic damping with twofold symmetry at room temperature. The observed anisotropic relaxation is attributed to the magnetization orientation dependence of the band structure. In addition, we demonstrated that such anisotropy can be tailored by manipulating the stain. This work provides new insights to understand the mechanism of magnetization relaxation.
In this work we report the appearence of a large perpendicular magnetic anisotropy (PMA) in Fe$_{1-x}$Ga$_x$ thin films grown onto ZnSe/GaAs(100). This arising anisotropy is related to the tetragonal metastable phase in as-grown samples recently repo rted [M. Eddrief {it et al.}, Phys. Rev. B {bf 84}, 161410 (2011)]. By means of ferromagnetic resonance studies we measured PMA values up to $sim$ 5$times$10$^5$ J/m$^3$. PMA vanishes when the cubic structure is recovered upon annealing at 300$^{circ}$C. Despite the important values of the magnetoelastic constants measured via the cantilever method, the consequent magnetoelastic contribution to PMA is not enough to explain the observed anisotropy values in the distorted state. {it Ab initio} calculations show that the chemical ordering plays a crucial role in the appearance of PMA. Through a phenomenological model we are able to explain that an excess of next nearest neighbour Ga pairs (B$_2$-like ordering) along the perpendicular direction arises as the source of PMA in Fe$_{1-x}$Ga$_x$ thin films.
The Gilbert damping of ferromagnetic materials is arguably the most important but least understood phenomenological parameter that dictates real-time magnetization dynamics. Understanding the physical origin of the Gilbert damping is highly relevant to developing future fast switching spintronics devices such as magnetic sensors and magnetic random access memory. Here, we report an experimental study of temperature-dependent Gilbert damping in permalloy (Py) thin films of varying thicknesses by ferromagnetic resonance. From the thickness dependence, two independent contributions to the Gilbert damping are identified, namely bulk damping and surface damping. Of particular interest, bulk damping decreases monotonically as the temperature decreases, while surface damping shows an enhancement peak at the temperature of ~50 K. These results provide an important insight to the physical origin of the Gilbert damping in ultrathin magnetic films.
We examine magnetic relaxation in polycrystalline Fe films with strong and weak crystallographic texture. Out-of-plane ferromagnetic resonance (FMR) measurements reveal Gilbert damping parameters of $approx$ 0.0024 for Fe films with thicknesses of 4- 25 nm, regardless of their microstructural properties. The remarkable invariance with film microstructure strongly suggests that intrinsic Gilbert damping in polycrystalline Fe is a local property of nanoscale crystal grains, with limited impact from grain boundaries and film roughness. By contrast, the in-plane FMR linewidths of the Fe films exhibit distinct nonlinear frequency dependences, indicating the presence of strong extrinsic damping. To fit our experimental data, we have used a grain-to-grain two-magnon scattering model with two types of correlation functions aimed at describing the spatial distribution of inhomogeneities in the film. However, neither of the two correlation functions is able to reproduce the experimental data quantitatively with physically reasonable parameters. Our finding points to the need to further examine the fundamental impact of film microstructure on extrinsic damping.
Thin highly textured Fe$_{mathrm{1+x}}$Co$_{mathrm{2-x}}$Si ($0 leq$ x $leq 1$) films were prepared on MgO (001) substrates by magnetron co-sputtering. The magneto-optic Kerr effect (MOKE) and ferromagnetic resonance (FMR) measurements were used to i nvestigate the composition dependence of the magnetization, the magnetic anisotropy, the gyromagnetic ratio and the relaxation of the films. The effective magnetization for the thin Fe$_{mathrm{1+x}}$Co$_{mathrm{2-x}}$Si films, determined by FMR measurements, are consistent with the Slater Pauling prediction. Both MOKE and FMR measurements reveal a pronounced fourfold anisotropy distribution for all films. In addition we found a strong influence of the stoichiometry on the anisotropy as the cubic anisotropy strongly increases with increasing Fe concentration. The gyromagnetic ratio is only weakly dependent on the composition. We find low Gilbert damping parameters for all films with values down to $0.0012pm0.00012$ for Fe$_{1.75}$Co$_{1.25}$Si. The effective damping parameter for Co$_2$FeSi is found to be $0.0018pm 0.0004$. We also find a pronounced anisotropic relaxation, which indicates significant contributions of two-magnon scattering processes that is strongest along the easy axes of the films. This makes thin Fe$_{mathrm{1+x}}$Co$_{mathrm{2-x}}$Si films ideal materials for the application in STT-MRAM devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا