ترغب بنشر مسار تعليمي؟ اضغط هنا

MagFace: A Universal Representation for Face Recognition and Quality Assessment

93   0   0.0 ( 0 )
 نشر من قبل Qiang Meng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The performance of face recognition system degrades when the variability of the acquired faces increases. Prior work alleviates this issue by either monitoring the face quality in pre-processing or predicting the data uncertainty along with the face feature. This paper proposes MagFace, a category of losses that learn a universal feature embedding whose magnitude can measure the quality of the given face. Under the new loss, it can be proven that the magnitude of the feature embedding monotonically increases if the subject is more likely to be recognized. In addition, MagFace introduces an adaptive mechanism to learn a wellstructured within-class feature distributions by pulling easy samples to class centers while pushing hard samples away. This prevents models from overfitting on noisy low-quality samples and improves face recognition in the wild. Extensive experiments conducted on face recognition, quality assessments as well as clustering demonstrate its superiority over state-of-the-arts. The code is available at https://github.com/IrvingMeng/MagFace.

قيم البحث

اقرأ أيضاً

106 - Baoyun Peng , Min Liu , Heng Yang 2021
Face recognition has made significant progress in recent years due to deep convolutional neural networks (CNN). In many face recognition (FR) scenarios, face images are acquired from a sequence with huge intra-variations. These intra-variations, whic h are mainly affected by the low-quality face images, cause instability of recognition performance. Previous works have focused on ad-hoc methods to select frames from a video or use face image quality assessment (FIQA) methods, which consider only a particular or combination of several distortions. In this work, we present an efficient non-reference image quality assessment for FR that directly links image quality assessment (IQA) and FR. More specifically, we propose a new measurement to evaluate image quality without any reference. Based on the proposed quality measurement, we propose a deep Tiny Face Quality network (tinyFQnet) to learn a quality prediction function from data. We evaluate the proposed method for different powerful FR models on two classical video-based (or template-based) benchmark: IJB-B and YTF. Extensive experiments show that, although the tinyFQnet is much smaller than the others, the proposed method outperforms state-of-the-art quality assessment methods in terms of effectiveness and efficiency.
164 - Rushuai Liu , Weijun Tan 2021
As the deep learning makes big progresses in still-image face recognition, unconstrained video face recognition is still a challenging task due to low quality face images caused by pose, blur, occlusion, illumination etc. In this paper we propose a n etwork for face recognition which gives an explicit and quantitative quality score at the same time when a feature vector is extracted. To our knowledge this is the first network that implements these two functions in one network online. This network is very simple by adding a quality network branch to the baseline network of face recognition. It does not require training datasets with annotated face quality labels. We evaluate this network on both still-image face datasets and video face datasets and achieve the state-of-the-art performance in many cases. This network enables a lot of applications where an explicit face quality scpre is used. We demonstrate three applications of the explicit face quality, one of which is a progressive feature aggregation scheme in online video face recognition. We design an experiment to prove the benefits of using the face quality in this application. Code will be available at url{https://github.com/deepcam-cn/facequality}.
Practical face recognition has been studied in the past decades, but still remains an open challenge. Current prevailing approaches have already achieved substantial breakthroughs in recognition accuracy. However, their performance usually drops dram atically if face samples are severely misaligned. To address this problem, we propose a highly efficient misalignment-robust locality-constrained representation (MRLR) algorithm for practical real-time face recognition. Specifically, the locality constraint that activates the most correlated atoms and suppresses the uncorrelated ones, is applied to construct the dictionary for face alignment. Then we simultaneously align the warped face and update the locality-constrained dictionary, eventually obtaining the final alignment. Moreover, we make use of the block structure to accelerate the derived analytical solution. Experimental results on public data sets show that MRLR significantly outperforms several state-of-the-art approaches in terms of efficiency and scalability with even better performance.
Face images captured in heterogeneous environments, e.g., sketches generated by the artists or composite-generation software, photos taken by common cameras and infrared images captured by corresponding infrared imaging devices, usually subject to la rge texture (i.e., style) differences. This results in heavily degraded performance of conventional face recognition methods in comparison with the performance on images captured in homogeneous environments. In this paper, we propose a novel sparse graphical representation based discriminant analysis (SGR-DA) approach to address aforementioned face recognition in heterogeneous scenarios. An adaptive sparse graphical representation scheme is designed to represent heterogeneous face images, where a Markov networks model is constructed to generate adaptive sparse vectors. To handle the complex facial structure and further improve the discriminability, a spatial partition-based discriminant analysis framework is presented to refine the adaptive sparse vectors for face matching. We conducted experiments on six commonly used heterogeneous face datasets and experimental results illustrate that our proposed SGR-DA approach achieves superior performance in comparison with state-of-the-art methods.
In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA metho d should consider both the intrinsic property and the recognizability of the face image. Most previous works aim to estimate the sample-wise embedding uncertainty or pair-wise similarity as the quality score, which only considers the information from partial intra-class. However, these methods ignore the valuable information from the inter-class, which is for estimating to the recognizability of face image. In this work, we argue that a high-quality face image should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus, we propose a novel unsupervised FIQA method that incorporates Similarity Distribution Distance for Face Image Quality Assessment (SDD-FIQA). Our method generates quality pseudo-labels by calculating the Wasserstein Distance (WD) between the intra-class similarity distributions and inter-class similarity distributions. With these quality pseudo-labels, we are capable of training a regression network for quality prediction. Extensive experiments on benchmark datasets demonstrate that the proposed SDD-FIQA surpasses the state-of-the-arts by an impressive margin. Meanwhile, our method shows good generalization across different recognition systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا