ﻻ يوجد ملخص باللغة العربية
Inversion symmetry is a key symmetry in unconventional superconductors and even its local breaking can have profound implications. For inversion-symmetric systems, there is a competition on a microscopic level between the spin-orbit coupling associated with the local lack of inversion and hybridizing terms that `restore inversion. Investigating a layered system with alternating mirror-symmetry breaking, we study this competition considering the spin response of different superconducting order parameters for the case of strong spin-orbit coupling. We find that signatures of the local non-centrosymmetry, such as an increased spin susceptibility in spin-singlet superconductors for $Trightarrow 0$, persist even into the quasi-three-dimensional regime. This leads to a direction dependent spin response which allows to distinguish different superconducting order parameters. Furthermore, we identify several regimes with possible topological superconducting phases within a symmetry-indicator analysis. Our results may have direct relevance for the recently reported Ce-based superconductor CeRh$_2$As$_2$ and beyond.
Spin-momentum locking is essential to the spin-split Fermi surfaces of inversion-symmetry broken materials, which are caused by either Rashba-type or Zeeman-type spin-orbit coupling (SOC). While the effect of Zeeman-type SOC on superconductivity has
The presence of spin-orbit (SO) interaction in a noncentrosymmetric superconductor, La2C3 (T_c~11 K) is demonstrated by muon spin rotation (muSR) in its normal state, where muSR spectra exhibit field-induced weak depolarization due to van Vleck-like
The bulk-boundary correspondence guarantees topologically protected edge states in a two-dimensional topological superconductor. Unlike in topological insulators, these edge states are, however, not connected to a quantized (spin) current as the elec
The Josephson current through a 1D quantum wire with Rashba spin-orbit and electron-electron interactions is calculated. We show that the interplay of Rashba and Zeeman interactions gives rise to a supercurrent through the 1D conductor that is anomal
The upper critical field in type II superconductors is limited by the Pauli paramagnetic limit. In superconductors with strong Rashba spin-orbit coupling this limit can be overcome by forming a helical state. Here we quantitatively study the magnetic