ﻻ يوجد ملخص باللغة العربية
Quantum Hall phases are gapped in the bulk but support chiral edge modes, both charged and neutral. Here we consider a circuit where the path from the source of electric current to the drain necessarily passes through a segment consisting solely of neutral modes. Surprisingly, we find that upon biasing the source, a dc electric current is detected at the drain. Thus, neutral modes carry information that can be used to nonlocally reconstruct a dc charge current. Our protocol can be used to detect neutral modes, not only the edge modes of a quantum Hall system, but also those that have a non-quantum Hall origin. We conclude with a possible experimental realization of this phenomenon.
We describe electrical detection of spin pumping in metallic nanostructures. In the spin pumping effect, a precessing ferromagnet attached to a normal-metal acts as a pump of spin-polarized current, giving rise to a spin accumulation. The resulting s
Counter propagating (upstream) chiral neutral edge modes, which were predicted to be present in hole-conjugate states, were observed recently in a variety of fractional quantum Hall states (v=2/3,v=3/5,v=8/3 & v=5/2), by measuring charge noise that r
The Josephson supercurrent through the hybrid Majorana--quantum dot--Majorana junction is investigated. We particularly analyze the effect of spin-selective coupling between the Majorana and quantum dot states, which emerges only in the topological p
We report measurements demonstrating that when the Neel vector of the collinear antiferromagnet RuO2 is appropriately canted relative to the sample plane, the antiferromagnet generates a substantial out of plane damping-like torque. The measurements
Helical modes, conducting opposite spins in opposite directions, are shown to exist in metallic armchair nanotubes in an all-electric setup. This is a consequence of the interplay between spin-orbit interaction and strong electric fields. The helical