ﻻ يوجد ملخص باللغة العربية
The potential for detecting DM at the Compact Linear Collider (CLIC) is investigated at mbox{$sqrt{s}=$ 3 TeV}. The sensitivity of the search is estimated by computing the 95% confidence level upper limit cross section as a function of the dark matter mass. Left-handed (right-handed) polarised Pem beams increase (decrease) respectively the Standard Model backgrounds and are essential to characterize the WIMPs properties and control the systematic errors. Using right-handed polarised Pem beams is decreasing significantly the 95% confidence level cross section. Using the ratio of the energy distributions for left-handed and right-handed polarised Pem beams, systematic errors cancel out. Computing the 95% confidence level upper limit cross section using the ratio requires a model assumption to compute the expected number of signal events. Exclusion limits for dark matter are derived using dark matter Simplified Models for two values of the e-e-mediator vertex coupling, a mediator width of 10 GeV and for a fixed value of the mediator-DM-DM coupling. For a mediator mass of 3.5 TeV, the measurement of the differential distribution of the significance as a function of the photon energy for the process mbox{Pem Pep $to$ X X PGg} allows the discrimination between different dark matter mediators and the measurement of the WIMP mass to nearly half the centre-of-mass energy. For a mbox{1 TeV} WIMP, the mass is determined with a 1% accuracy.
The determination of scalar lepton and gaugino masses is an important part of the programme of spectroscopic studies of Supersymmetry at a high energy e+e- linear collider. In this article we present results of a study of the processes: e+e- -> eR eR
Extra neutral gauge bosons (Z) are predicted in many extensions of the Standard Model (SM). In the minimal anomaly-free Z model (AFZ), the phenomenology is controlled by only three parameters beyond the SM ones, the Z mass and two effective coupling
The determination of smuon and neutralino masses in smuon pair production is an important part of the program of spectroscopic studies of Supersymmetry at a high energy linear collider. In this note we report the first results of a study of e+e- -> ~
We consider simplified models for dark matter (DM) at the LHC, focused on mono-Higgs, -Z, or -b produced in the final state. Our primary purpose is to study the LHC reach of a relatively complete set of simplified models for these final states, while
The determination of scalar leptons and gauginos masses is an important part of the program of spectroscopic studies of Supersymmetry at a high energy linear collider. In this talk we present results of a study of pair produced Scalar Electrons, Scal