ترغب بنشر مسار تعليمي؟ اضغط هنا

Gigantic tunneling magnetoresistance in magnetic Weyl semimetal tunnel junctions

126   0   0.0 ( 0 )
 نشر من قبل Duarte Sousa
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the tunneling magnetoresistance in magnetic tunnel junctions (MTJs) comprised of Weyl semimetal contacts. We show that chirality-magnetization locking leads to a gigantic tunneling magnetoresistance ratio, an effect that does not rely on spin filtering by the tunnel barrier. Our results indicate that the conductance in the anti-parallel configuration is more sensitive to magnetization fluctuations than in MTJs with normal ferromagnets, and predicts a TMR as large as 10^4 % when realistic magnetization fluctuations are accounted for. In addition, we show that the Fermi arc states give rise to a non-monotonic dependence of conductance on the misalignment angle between the magnetizations of the two contacts.



قيم البحث

اقرأ أيضاً

We study the current-induced torques in asymmetric magnetic tunnel junctions containing a conventional ferromagnet and a magnetic Weyl semimetal contact. The Weyl semimetal hosts chiral bulk states and topologically protected Fermi arc surface states which were found to govern the voltage behavior and efficiency of current-induced torques. We report how bulk chirality dictates the sign of the non-equilibrium torques acting on the ferromagnet and discuss the existence of large field-like torques acting on the magnetic Weyl semimetal which exceeds the theoretical maximum of conventional magnetic tunnel junctions. The latter are derived from the Fermi arc spin texture and display a counter-intuitive dependence on the Weyl nodes separation. Our results shed light on the new physics of multilayered spintronic devices comprising of magnetic Weyl semimetals, which might open doors for new energy efficient spintronic devices.
The effects of the spin-orbit interaction on the tunneling magnetoresistance of ferromagnet/semiconductor/normal metal tunnel junctions are investigated. Analytical expressions for the tunneling anisotropic magnetoresistance (TAMR) are derived within an approximation in which the dependence of the magnetoresistance on the magnetization orientation in the ferromagnet originates from the interference between Bychkov-Rashba and Dresselhaus spin-orbit couplings that appear at junction interfaces and in the tunneling region. We also investigate the transport properties of ferromagnet/semiconductor/ferromagnet tunnel junctions and show that in such structures the spin-orbit interaction leads not only to the TAMR effect but also to the anisotropy of the conventional tunneling magnetoresistance (TMR). The resulting anisotropic tunneling magnetoresistance (ATMR) depends on the absolute magnetization directions in the ferromagnets. Within the proposed model, depending on the magnetization directions in the ferromagnets, the interplay of Bychkov-Rashba and Dresselhaus spin-orbit couplings produces differences between the rates of transmitted and reflected spins at the ferromagnet/seminconductor interfaces, which results in an anisotropic local density of states at the Fermi surface and in the TAMR and ATMR effects. Model calculations for Fe/GaAs/Fe tunnel junctions are presented. Furthermore, based on rather general symmetry considerations, we deduce the form of the magnetoresistance dependence on the absolute orientations of the magnetizations in the ferromagnets.
Using a simple quantum-mechanical model, we explore a tunneling anisotropic magnetoresistance (TAMR) effect in ferroelectric tunnel junctions (FTJs) with a ferromagnetic electrode and a ferroelectric barrier layer, which spontaneous polarization give s rise to the Rashba and Dresselhaus spin-orbit coupling (SOC). For realistic parameters of the model, we predict sizable TAMR measurable experimentally. For asymmetric FTJs, which electrodes have different work functions, the built-in electric field affects the SOC parameters and leads to TAMR dependent on ferroelectric polarization direction. The SOC change with polarization switching affects tunneling conductance, revealing a new mechanism of tunneling electroresistance (TER). These results demonstrate new functionalities of FTJs which can be explored experimentally and used in electronic devices.
We show that a surface acoustic wave (SAW) applied across the terminals of a magnetic tunnel junction (MTJ) decreases both the (time-averaged) parallel and antiparallel resistances of the MTJ, with the latter decreasing much more than the former. Thi s results in a decrease of the tunneling magnetoresistance (TMR) ratio. The coercivities of the free and fixed layer of the MTJ, however, are not affected significantly, suggesting that the SAW does not cause large-angle magnetization rotation in the magnetic layers through the inverse magnetostriction (Villari) effect at the power levels used. This study sheds light on the dynamical behavior of an MTJ under periodic compressive and tensile strain.
While the effects of lattice mismatch-induced strain, mechanical strain, as well as the intrinsic strain of thin films are sometimes detrimental, resulting in mechanical deformation and failure, strain can also be usefully harnessed for applications such as data storage, transistors, solar cells, and strain gauges, among other things. Here, we demonstrate that quantum transport across magnetic tunnel junctions (MTJs) can be significantly affected by the introduction of controllable mechanical strain, achieving an enhancement factor of ~2 in the experimental tunneling magnetoresistance (TMR) ratio. We further correlate this strain-enhanced TMR with coherent spin tunneling through the MgO barrier. Moreover, the strain-enhanced TMR is analyzed using non-equilibrium Greens function (NEGF) quantum transport calculations. Our results help elucidate the TMR mechanism at the atomic level and can provide a new way to enhance, as well as tune, the quantum properties in nanoscale materials and devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا