ﻻ يوجد ملخص باللغة العربية
Despite the technological advancements in Virtual Reality (VR), users are constantly combating feelings of nausea and disorientation, the so called cybersickness. Triggered by a sensory conflict between the visual and vestibular systems, cybersickness symptoms cause discomfort and hinder the immersive VR experience. Here we investigated cybersickness in 360-degree VR. In 360-degrees VR experiences, movement in the real world is not reflected in the virtual world, and therefore self-motion information is not corroborated by matching visual and vestibular cues, which may potentially induce cybersickness. We have evaluated whether an Artificial Intelligence (AI) software designed to supplement the VR experience with artificial 6-degree-of-freedom motion may reduce sensory conflict, and therefore cybersickness. Explicit (questionnaires) and implicit (physiological responses) measurements were used to measure cybersickness symptoms during and after VR exposure. Our results confirmed a reduction in feelings of nausea during the AI supplemented 6-degree-of-freedom motion VR. Through improving the congruency between visual and vestibular cues, users can experience more engaging, immersive and safe virtual reality, which is critical for the application of VR in educational, medical, cultural and entertainment settings.
This paper proposes the concept of live-action virtual reality games as a new genre of digital games based on an innovative combination of live-action, mixed-reality, context-awareness, and interaction paradigms that comprise tangible objects, contex
We present PhyShare, a new haptic user interface based on actuated robots. Virtual reality has recently been gaining wide adoption, and an effective haptic feedback in these scenarios can strongly support users sensory in bridging virtual and physica
With the popularity of online access in virtual reality (VR) devices, it will become important to investigate exclusive and interactive CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) designs for VR devices. In th
In this article we describe Hack.VR, an object-oriented programming game in virtual reality. Hack.VR uses a VR programming language in which nodes represent functions and node connections represent data flow. Using this programming framework, players
We propose a new approach for interaction in Virtual Reality (VR) using mobile robots as proxies for haptic feedback. This approach allows VR users to have the experience of sharing and manipulating tangible physical objects with remote collaborators