ﻻ يوجد ملخص باللغة العربية
The vast quantity of strong galaxy-galaxy gravitational lenses expected by future large-scale surveys necessitates the development of automated methods to efficiently model their mass profiles. For this purpose, we train an approximate Bayesian convolutional neural network (CNN) to predict mass profile parameters and associated uncertainties, and compare its accuracy to that of conventional parametric modelling for a range of increasingly complex lensing systems. These include standard smooth parametric density profiles, hydrodynamical EAGLE galaxies and the inclusion of foreground mass structures, combined with parametric sources and sources extracted from the Hubble Ultra Deep Field. In addition, we also present a method for combining the CNN with traditional parametric density profile fitting in an automated fashion, where the CNN provides initial priors on the latters parameters. On average, the CNN achieved errors 19 $pm$ 22 per cent lower than the traditional methods blind modelling. The combination method instead achieved 27 $pm$ 11 per cent lower errors over the blind modelling, reduced further to 37 $pm$ 11 per cent when the priors also incorporated the CNN-predicted uncertainties, with errors also 17 $pm$ 21 per cent lower than the CNN by itself. While the CNN is undoubtedly the fastest modelling method, the combination of the two increases the speed of conventional fitting alone by factors of 1.73 and 1.19 with and without CNN-predicted uncertainties, respectively. This, combined with greatly improved accuracy, highlights the benefits one can obtain through combining neural networks with conventional techniques in order to achieve an efficient automated modelling approach.
We explore the effectiveness of deep learning convolutional neural networks (CNNs) for estimating strong gravitational lens mass model parameters. We have investigated a number of practicalities faced when modelling real image data, such as how netwo
Future large-scale surveys with high resolution imaging will provide us with a few $10^5$ new strong galaxy-scale lenses. These strong lensing systems however will be contained in large data amounts which are beyond the capacity of human experts to v
We present ProFit, a new code for Bayesian two-dimensional photometric galaxy profile modelling. ProFit consists of a low-level C++ library (libprofit), accessible via a command-line interface and documented API, along with high-level R (ProFit) and
We investigate the use of approximate Bayesian neural networks (BNNs) in modeling hundreds of time-delay gravitational lenses for Hubble constant ($H_0$) determination. Our BNN was trained on synthetic HST-quality images of strongly lensed active gal
The hyperfine transitions of the ground-rotational state of the hydroxyl radical (OH) have emerged as a versatile tracer of the diffuse molecular interstellar medium. We present a novel automated Gaussian decomposition algorithm designed specifically