ترغب بنشر مسار تعليمي؟ اضغط هنا

Clusterplot: High-dimensional Cluster Visualization

115   0   0.0 ( 0 )
 نشر من قبل Min Lu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Clusterplot, a multi-class high-dimensional data visualization tool designed to visualize cluster-level information offering an intuitive understanding of the cluster inter-relations. Our unique plots leverage 2D blobs devised to convey the geometrical and topological characteristics of clusters within the high-dimensional data, and their pairwise relations, such that general inter-cluster behavior is easily interpretable in the plot. Class identity supervision is utilized to drive the measuring of relations among clusters in high-dimension, particularly, proximity and overlap, which are then reflected spatially through the 2D blobs. We demonstrate the strength of our clusterplots and their ability to deliver a clear and intuitive informative exploration experience for high-dimensional clusters characterized by complex structure and significant overlap.



قيم البحث

اقرأ أيضاً

Data visualization is the process by which data of any size or dimensionality is processed to produce an understandable set of data in a lower dimensionality, allowing it to be manipulated and understood more easily by people. The goal of our paper i s to survey the performance of current high-dimensional data visualization techniques and quantify their strengths and weaknesses through relevant quantitative measures, including runtime, memory usage, clustering quality, separation quality, global structure preservation, and local structure preservation. To perform the analysis, we select a subset of state-of-the-art methods. Our work shows how the selected algorithms produce embeddings with unique qualities that lend themselves towards certain tasks, and how each of these algorithms are constrained by compute resources.
We present a novel privacy preservation strategy for decentralized visualization. The key idea is to imitate the flowchart of the federated learning framework, and reformulate the visualization process within a federated infrastructure. The federatio n of visualization is fulfilled by leveraging a shared global module that composes the encrypted externalizations of transformed visual features of data pieces in local modules. We design two implementations of federated visualization: a prediction-based scheme, and a query-based scheme. We demonstrate the effectiveness of our approach with a set of visual forms, and verify its robustness with evaluations. We report the value of federated visualization in real scenarios with an expert review.
In this paper, we propose a perceptually-guided visualization sharpening technique. We analyze the spectral behavior of an established comprehensive perceptual model to arrive at our approximated model based on an adapted weighting of the bandpass im ages from a Gaussian pyramid. The main benefit of this approximated model is its controllability and predictability for sharpening color-mapped visualizations. Our method can be integrated into any visualization tool as it adopts generic image-based post-processing, and it is intuitive and easy to use as viewing distance is the only parameter. Using highly diverse datasets, we show the usefulness of our method across a wide range of typical visualizations.
We have recently developed an algorithm for vector field visualization with oriented streamlines, able to depict the flow directions everywhere in a dense vector field and the sense of the local orientations. The algorithm has useful applications in the visualization of the director field in nematic liquid crystals. Here we propose an improvement of the algorithm able to enhance the visualization of the local magnitude of the field. This new approach of the algorithm is compared with the same procedure applied to the Line Integral Convolution (LIC) visualization.
85 - Matthew A. Petroff 2021
Color cycles, ordered sets of colors for data visualization, that balance aesthetics with accessibility considerations are presented. In order to model aesthetic preference, data were collected with an online survey, and the results were used to trai n a machine-learning model. To ensure accessibility, this model was combined with minimum-perceptual-distance constraints, including for simulated color-vision deficiencies, as well as with minimum-lightness-distance constraints for grayscale printing, maximum-lightness constraints for maintaining contrast with a white background, and scores from a color-saliency model for ease of use of the colors in verbal and written descriptions. Optimal color cycles containing six, eight, and ten colors were generated using the data-driven aesthetic-preference model and accessibility constraints. Due to the balance of aesthetics and accessibility considerations, the resulting color cycles can serve as reasonable defaults in data-plotting codes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا