ﻻ يوجد ملخص باللغة العربية
We investigate in detail the spectrum of gravitational waves induced by a peaked primordial curvature power spectrum generated in single field inflationary models. We argue that the $f_{rm NL}$ parameter can be inferred by measuring the high frequency spectral tilt of the induced gravitational waves. We also show that the intrinsically non-Gaussian impact of $f_{rm NL}$ in $Omega_{rm GW}$ is to broaden its peak, although at a negligible level in order not to overproduce primordial black holes. We discuss possible degeneracies in the high frequency spectral tilt between $f_{rm NL}$ and a general equation of state of the universe $w$. Finally, we discuss the constraints on the amplitude, peak and slope (or equivalently, $f_{rm NL}$) of the primordial power spectrum by combining current and future gravitational wave experiments with limits on $mu$ distortions from the cosmic microwave background.
The possibility that primordial black holes (PBHs) represent all of the dark matter (DM) in the Universe and explain the coalescences of binary black holes detected by LIGO/Virgo has attracted a lot of attention. PBHs are generated by the enhancement
We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contribution
We consider a model of inflation consisting a triplet of $U(1)$ vector fields with the parity violating interaction which is non-minimally coupled to inflaton. The vector field sector enjoys global $O(3)$ symmetry which admits isotropic configuration
We explore possible non-Gaussian features of primordial gravitational waves by constructing model-independent templates for nonlinearity parameters of tensor bispectrum. Our analysis is based on Effective Field Theory of inflation that relies on no p
Measuring the primordial power spectrum on small scales is a powerful tool in inflation model building, yet constraints from Cosmic Microwave Background measurements alone are insufficient to place bounds stringent enough to be appreciably effective.