ترغب بنشر مسار تعليمي؟ اضغط هنا

Gemini/Phoenix H-band analysis of the globular cluster AL3

81   0   0.0 ( 0 )
 نشر من قبل Beatriz Barbuy Prof
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The globular cluster AL~3 is old and located in the inner bulge. Three individual stars were observed with the Phoenix spectrograph at the Gemini South telescope. The wavelength region contains prominent lines of CN, OH, and CO, allowing the derivation of C, N, and O abundances of cool stars. We aim to derive C, N, O abundances of three stars in the bulge globular cluster AL3, and additionally in stars of NGC 6558 and HP1. The spectra of AL3 allows us to derive the clusters radial velocity. For AL3, we applied a new code to analyse its colour-magnitude diagram. Synthetic spectra were computed and compared to observed spectra for the three clusters. We present a detailed identification of lines in the spectral region centred at 15555 A, covering the wavelength range 15525-15590 A. C, N, and O abundances are tentatively derived for the sample stars.



قيم البحث

اقرأ أيضاً

We used ultra-deep $J$ and $K_s$ images secured with the near-infrared GSAOI camera assisted by the multi-conjugate adaptive optics system GeMS at the GEMINI South Telescope in Chile, to obtain a ($K_s$, $J-K_s$) color-magnitude diagram (CMD) for the bulge globular cluster NGC 6624. We obtained the deepest and most accurate near-infrared CMD from the ground for this cluster, by reaching $K_s$ $sim$ 21.5, approximately 8 magnitudes below the horizontal branch level. The entire extension of the Main Sequence (MS) is nicely sampled and at $K_s$ $sim$ 20 we detected the so-called MS knee in a purely near-infrared CMD. By taking advantage of the exquisite quality of the data, we estimated the absolute age of NGC 6624 ($t_{age}$ = 12.0 $pm$ 0.5 Gyr), which turns out to be in good agreement with previous studies in the literature. We also analyzed the luminosity and mass functions of MS stars down to M $sim$ 0.45 M$_{odot}$ finding evidence of a significant increase of low-mass stars at increasing distances from the cluster center. This is a clear signature of mass segregation, confirming that NGC 6624 is in an advanced stage of dynamical evolution.
142 - J. Melendez 2003
A detailed abundance analysis of 5 giants of the metal-rich bulge globular cluster NGC 6553 was carried out using high resolution infrared spectra in the H band, obtained at the Gemini-South 8m telescope. JK photometry collected at ESO and VI photome try from the Hubble Space Telescope are used to derive effective temperatures. The present analysis provides a metallicity [Fe/H] = -0.20 +/- 0.10. An overabundance of oxygen of [O/Fe] = +0.20 is found from IR OH lines.
It has been suggested that the oldest stellar populations in the Milky Way Galaxy are tightly bound and confined to the central regions of the Galaxy. This is one of the reasons why a handful of globular clusters located in the bulge region are thoug ht to be remnants of the primeval formation stages of the Milky Way. The globular cluster, ESO 456-SC38 (Djorgovski~2) is one such cluster; it has a blue horizontal branch, is projected very close to the center of the Galaxy, and has an orbit confining it to the bulge/bar region. The first alpha abundances of seven stars in this heavily reddened cluster are presented using APOGEE DR16. A significant spread in the abundances of N, C, Na, and Al indicates the presence of multiple stellar populations in this cluster. Using Gaia DR2 proper motions and radial velocities from BRAVA-RR, we confirm RR Lyrae stars belong to this globular cluster.
Globular clusters associated with the Galactic bulge are important tracers of stellar populations in the inner Galaxy. High resolution analysis of stars in these clusters allows us to characterize them in terms of kinematics, metallicity, and individ ual abundances, and to compare these fingerprints with those characterizing field populations. We present iron and element ratios for seven red giant stars in the globular cluster NGC~6723, based on high resolution spectroscopy. High resolution spectra ($Rsim48~000$) of seven K giants belonging to NGC 6723 were obtained with the FEROS spectrograph at the MPG/ESO 2.2m telescope. Photospheric parameters were derived from $sim130$ FeI and FeII transitions. Abundance ratios were obtained from line-to-line spectrum synthesis calculations on clean selected features. An intermediate metallicity of [Fe/H]$=-0.98pm0.08$ dex and a heliocentric radial velocity of $v_{hel}=-96.6pm1.3~km s^{-1}$ were found for NGC 6723. Alpha-element abundances present enhancements of $[O/Fe]=0.29pm0.18$ dex, $[Mg/Fe]=0.23pm0.10$ dex, $[Si/Fe]=0.36pm0.05$ dex, and $[Ca/Fe]=0.30pm0.07$ dex. Similar overabundance is found for the iron-peak Ti with $[Ti/Fe]=0.24pm0.09$ dex. Odd-Z elements Na and Al present abundances of $[Na/Fe]=0.00pm0.21$ dex and $[Al/Fe]=0.31pm0.21$ dex, respectively. Finally, the s-element Ba is also enhanced by $[Ba/Fe]=0.22pm0.21$ dex. The enhancement levels of NGC 6723 are comparable to those of other metal-intermediate bulge globular clusters. In turn, these enhancement levels are compatible with the abundance profiles displayed by bulge field stars at that metallicity. This hints at a possible similar chemical evolution with globular clusters and the metal-poor of the bulge going through an early prompt chemical enrichment.
361 - A. Savino , L. Posti 2019
Large spectroscopic surveys of the Milky Way have revealed that a small population of stars in the halo have light element abundances comparable to those found in globular clusters. The favoured explanation for the peculiar abundances of these stars is that they originated inside a globular cluster and were subsequently lost. Using orbit calculations we assess the likelihood that an existing sample of 57 field stars with globular cluster-like CN band strength originated in any of the currently known Milky Way globular clusters. Using Sloan Digital Sky Survey and Gaia data, we determine orbits and integrals of motion of our sample of field stars, and use these values and metallicity to identify likely matches to globular clusters. The pivot hypothesis is that had these stars been stripped from such objects, they would have remained on very similar orbits. We find that ~ 70% of the sample of field stars have orbital properties consistent with the halo of the Milky Way; however, only 20 stars have likely orbital associations with an existing globular cluster. The remaining ~ 30% of the sample have orbits that place them in the outer Galactic disc. No cluster of similar metallicity is known on analogous disc orbits. The orbital properties of the halo stars seem to be compatible with the globular cluster escapee scenario. The stars in the outer disc are particularly surprising and deserve further investigation to establish their nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا