ﻻ يوجد ملخص باللغة العربية
The study of the extragalactic background light (EBL) is undergoing a renaissance. New results from very high energy experiments and deep space missions have broken the deadlock between the contradictory measurements in the optical and near-IR arising from direct versus discrete source estimates. We are also seeing advances in our ability to model the EBL from gamma-ray to radio wavelengths with improved dust models and AGN handling. With the advent of deep and wide spectroscopic and photometric redshift surveys, we can now subdivide the EBL into redshift intervals. This allows for the recovery of the Cosmic Spectral Energy Distribution (CSED), or emissivity of a representative portion of the Universe, at any time. With new facilities coming online, and more unified studies underway from gamma-ray to radio wavelengths, it will soon be possible to measure the EBL to within 1 per cent accuracy. At this level correct modelling of reionisation, awareness of missing populations or light, radiation from the intra-cluster and halo gas, and any signal from decaying dark-matter all become important. In due course, the goal is to measure and explain the origin of all photons incident on the Earths surface from the extragalactic domain, and within which is encoded the entire history of energy production in our Universe.
In Hubble Space Telescope (HST) imaging taken on 10 November 2014, four images of supernova (SN) Refsdal (redshift z=1.49) appeared in an Einstein-cross--like configuration (images S1-S4) around an early-type galaxy in the cluster MACS J1149.5+2223 (
We describe the construction of an all-sky galaxy catalogue, using SuperCOSMOS scans of Schmidt photographic plates from the UKST and POSS2 surveys. The photographic photometry is calibrated using SDSS data, with results that are linear to 2% or bett
We present a point-source detection algorithm that employs the second order Spherical Mexican Hat wavelet filter (SMHW2), and use it on C-BASS northern intensity data to produce a catalogue of point-sources. This catalogue allows us to cross-check th
The All-sky Medium Energy Gamma-ray Observatory (AMEGO) is a probe class mission concept that will provide essential contributions to multimessenger astrophysics in the late 2020s and beyond. AMEGO combines high sensitivity in the 200 keV to 10 GeV e
Using the k-means cluster analysis algorithm, we carry out an unsupervised classification of all galaxy spectra in the seventh and final Sloan Digital Sky Survey data release (SDSS/DR7). Except for the shift to restframe wavelengths, and the normaliz