ﻻ يوجد ملخص باللغة العربية
The accreting millisecond X-ray pulsar Swift J1756.9$-$2508 went into outburst in April 2018 and June 2019, 8.7 yr after the previous activity period. We investigated the temporal, timing and spectral properties of these two outbursts using data from NICER, XMM-Newton, NuSTAR, INTEGRAL, Swift and Insight-HXMT. The two outbursts exhibited similar broad-band spectra and X-ray pulse profiles. For the first time, we report the detection of the pulsed emission up to $sim100$ keV observed by Insight-HXMT during the 2018 outburst. We also found the pulsation up to $sim60$ keV observed by NICER and NuSTAR during the 2019 outburst. We performed a coherent timing analysis combining the data from two outbursts. The binary system is well described by a constant orbital period over a time span of $sim12$ years. The time-averaged broad-band spectra are well fitted by an absorbed thermal Comptonization model in a slab geometry with the electron temperature $kT_{rm e}=40$-50 keV, Thomson optical depth $tausim 1.3$, blackbody seed photon temperature $kT_{rm bb,seed}sim $0.7-0.8 keV and hydrogen column density of $N_{rm H}sim 4.2times10^{22}$ cm$^{-2}$. We searched the available data for type-I (thermonuclear) X-ray bursts, but found none, which is unsurprising given the estimated low peak accretion rate ($approx0.05$ of the Eddington rate) and generally low expected burst rates for hydrogen-poor fuel. Based on the history of four outbursts to date, we estimate the long-term average accretion rate at roughly $5times10^{-12} M_odot,{rm yr}^{-1}$ for an assumed distance of 8 kpc. The expected mass transfer rate driven by gravitational radiation in the binary implies the source can be no closer than 4 kpc.
We discuss the spectral and timing properties of the accreting millisecond X-ray pulsar SWIFT J1756.9-2508 observed by XMM-Newton, NICER and NuSTAR during the X-ray outburst occurred in April 2018. The spectral properties of the source are consistent
We present a timing analysis of the 2009 outburst of the accreting millisecond X-ray pulsar Swift J1756.9-2508, and a re-analysis of the 2007 outburst. The source shows a short recurrence time of only ~2 years between outbursts. Thanks to the approxi
SWIFT J1756.9-2508 is one of the few accreting millisecond pulsars (AMPs) discovered to date. We report here the results of our analysis of its aperiodic X-ray variability, as measured with the Rossi X-ray Timing Explorer during the 2007 outburst of
We report on the discovery by the Swift Gamma-Ray Burst Explorer of the eighth known transient accretion-powered millisecond pulsar, SWIFT J1756.9-2508, as part of routine observations with the Swift Burst Alert Telescope hard X-ray transient monitor
IGR J17591-2342 is a recently INTEGRAL discovered accreting millisecond X-ray pulsar that went into outburst around July 21, 2018. To better understand the physics acting in these systems during the outburst episode we performed detailed temporal-, t