ﻻ يوجد ملخص باللغة العربية
In September 2020, President Xi Jinping announced that China strives to achieve carbon neutrality before 2060. This ambitious and bold commitment was well received by the global community. However, the technology and pathway are not so clear. Here, we conducted an extensive review covering more than 200 published papers and summarized the key technologies to achieve carbon neutrality. We projected sectoral CO2 emissions for 2020-2050 based on our previous studies and published scenarios. We applied a medium sink scenario for terrestrial sinks due to the potential resource competition and included an ocean sink, which has generally not been included in previous estimates. We analyzed and revisited Chinas historical terrestrial carbon sink capacity from 1980-2020 based on multiple models and a literature review. To achieve neutrality, it is necessary to increase sink capacity and decrease emissions from many sources. On the one hand, critical measures to reduce emissions include decreasing the use of fossil fuels; substantially increasing the proportion of the renewable energy and nuclear energy. On the other hand, the capacity of future carbon sinks is projected to decrease due to the natural evolution of terrestrial ecosystems, and anthropogenic management practices are needed to increase sink capacity, including increasing the forest sinks through national ecological restoration projects and large-scale land greening campaigns; increasing wood harvesting and storage; and developing CCUS. This paper provides basic source and sink data,and established and promising new technologies for decreasing emissions and increasing sinks for use by the scientific community and policy makers.
Chinas pledge to reach carbon neutrality before 2060 is an ambitious goal and could provide the world with much-needed leadership on how to limit warming to +1.5C warming above pre-industrial levels by the end of the century. But the pathways that wo
Global Climate Models (GCMs) provide forecasts of future climate warming using a wide variety of highly sophisticated anthropogenic CO2 emissions models as input, each based on the evolution of four emissions drivers: population p, standard of living
Ozone (O$_{3}$) is a key oxidant and pollutant in the lower atmosphere. Significant increases in surface O$_{3}$ have been reported in many cities during the COVID-19 lockdown. Here we conduct comprehensive observation and modeling analyses of surfac
For astronomers to make a significant contribution to the reduction of climate change-inducing greenhouse gas emissions, we first must quantify our sources of emissions and review the most effective approaches for reducing them. Here we estimate that
This work considers a Poisson noise channel with an amplitude constraint. It is well-known that the capacity-achieving input distribution for this channel is discrete with finitely many points. We sharpen this result by introducing upper and lower bo